首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
金属工艺   1篇
能源动力   1篇
  2014年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
利用热压烧结法制备了不同含量n-SiC微粒填充的多元聚四氟乙烯(PTFE)复合材料,采用M-200环块磨损试验机在干摩擦条件下测定了复合材料的摩擦磨损性能。结果表明:n-SiC微粒显著地提高了复合材料的耐磨性;当n-SiC质量百分数为3%时,耐磨性为JS复合材料的17.81倍。  相似文献   
2.
The sulfuric acid decomposition should be performed in the wide temperature ranges from 550 °C to 950 °C to absorb the sensible heat of He in SI process. Therefore, the catalysts for the reaction should be stable even in the very corrosive reaction condition of 650 °C. Here, the Pt/n-SiC catalyst was prepared for the purpose and compared with the Pt/SiC catalyst. The both catalysts showed the high stability in the temperature ranges from 650 to 850 °C. The n-SiC with the surface area of 187.1 m2/g was prepared using nano-sized SiO2, which resulted in amorphous SiC phase. The SiC support with the surface area of 19.2 m2/g for the comparison showed the well crystalline structure. In spite of the large surface area differences between the n-SiC and SiC support, the Pt particle sizes of the Pt/n-SiC (average Pt size: 26.4 nm) catalyst were not so much different from those of the Pt/SiC (average Pt size: 26.1 nm) catalyst after the calcination at 1000 °C for 3 h. However, the catalytic activity of the Pt/n-SiC was much higher than that of the Pt/SiC. XRD analysis indicated that the Pt particles on the Pt/n-SiC was more stable than those of the Pt/SiC in the sulfuric acid decomposition and XPS analysis showed that the Pt valence state on the Pt/n-SiC was higher than that on the Pt/SiC. The surface analysis showed that the surface of the n-SiC particles was covered by SiO2 and Si4C4−xO4. These experimental results indicate that the Pt metal particles on n-SiC were stabilized on the oxidized Si surface. Therefore, it is suggested that the Pt particles stabilized on the oxidized Si surface can be a reason for the higher activity of the Pt/n-SiC catalyst as compared with the Pt/SiC catalyst.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号