首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20324篇
  免费   1582篇
  国内免费   809篇
电工技术   462篇
技术理论   2篇
综合类   1252篇
化学工业   5180篇
金属工艺   2709篇
机械仪表   734篇
建筑科学   1094篇
矿业工程   709篇
能源动力   244篇
轻工业   2632篇
水利工程   124篇
石油天然气   289篇
武器工业   303篇
无线电   690篇
一般工业技术   3232篇
冶金工业   2839篇
原子能技术   81篇
自动化技术   139篇
  2024年   42篇
  2023年   349篇
  2022年   549篇
  2021年   680篇
  2020年   655篇
  2019年   516篇
  2018年   526篇
  2017年   644篇
  2016年   565篇
  2015年   598篇
  2014年   925篇
  2013年   958篇
  2012年   1249篇
  2011年   1348篇
  2010年   1045篇
  2009年   988篇
  2008年   871篇
  2007年   1363篇
  2006年   1386篇
  2005年   1290篇
  2004年   1099篇
  2003年   954篇
  2002年   843篇
  2001年   670篇
  2000年   535篇
  1999年   410篇
  1998年   382篇
  1997年   289篇
  1996年   228篇
  1995年   188篇
  1994年   190篇
  1993年   130篇
  1992年   93篇
  1991年   39篇
  1990年   33篇
  1989年   32篇
  1988年   12篇
  1987年   9篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
2.
《Ceramics International》2021,47(23):32610-32618
AA7075 + 6%B4C+3%ZrC nano hybrid composite was successfully fabricated, with nano reinforcements composition in AA7075 alloy selected based on previous investigation, to achieve better mechanical performance. Two different sintering techniques, namely conventional and microwave, were implemented to determine the effect on microstructural and mechanical properties. Microstructural investigation was performed with the help of W-SEM. Tensile, compression, and hardness were measured with the help of UTM and Vickers microhardness machine. Porosity was calculated by using Archimedes principle. It was observed that the added nano ZrC particles formed agglomerates and the B4C particles were distributed homogenously. Composites processed by microwave sintering showed excellent mechanical properties compared to the conventionally sintered composites. No intermetallic compounds were detected in microwave sintered composites through XRD analysis, indicating strong and clean interface bonds between matrix and reinforcement particles. High strain to fracture value of 12.24% was noted in microwave sintered nano hybrid composite, while it was 6.12% for conventional sintered one. Fractography revealed no peeling action of reinforcements from the matrix material, and the mode of failure was brittle. It was concluded that, while fabricating nano range hybrid composites, the implementation of advanced sintering technique (microwave sintering) with low sintering temperatures and low sintering times with internal heat generations, helps in eliminating defects that may develop because of high surface energies of nano range reinforcements.  相似文献   
3.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
4.
5.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
6.
In this work, a new type of FeSi/FeNi soft magnetic powder core (SMPC) was successfully fabricated by coating FeNi nanoparticles on the surface of FeSi micrometer powder. The effects of different contents of FeNi nanoparticles on the micromorphology, internal structures, and soft magnetic properties of SMPCs were studied. The results show that FeNi nanoparticles adhere to the surface of FeSi powder, which can effectively fill the air gap between FeSi powder and is beneficial to the compaction of the powder cores during the pressing process. Thus, the density of the SMPCs is increased. Compared to FeSi SMPCs, the comprehensive soft magnetic properties of FeSi/FeNi SMPCs have been greatly improved. When adding 15 wt% FeNi nanoparticles, the SMPCs exhibit excellent magnetic properties with high effective permeability (increased by 43.8 %) and low core loss (decreased by 22.1 %). The high performance FeSi/FeNi SMPCs prepared in this work are expected to be widely used in power choke coils, uninterruptible power supplies, and boosts and inverter inductors.  相似文献   
7.
《Ceramics International》2021,47(21):30147-30155
Yttrium aluminum garnet (Y3Al5O12, YAG) is an important functional material. However, the strict and complicated preparation has limited its wide application. This study aimed to rapidly synthesize Y3Al5O12 by plasma electrolysis for the first time. The prepared powder was studied from topography, structure and elements by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The powder had a good crystal form with a spherical shape. The single kind of diffraction peak of Y3Al5O12 in XRD revealed the high purity of the synthesized powders. The study of the relationship between the applied voltage and the synthesized powder revealed a threshold voltage of 210 V under the present condition. The higher voltage led to the damage of the electrode due to excessive heat. The synthesis of the YAG powder had a melt-quench process. The two processes were carried out at the same time.  相似文献   
8.
9.
Bi2Sr2CaCu2Ox (Bi-2212) precursor powders were synthesized by the oxalate freeze drying (OFD) method. In comparison with the traditional method, the novel method could shorten the processing steps and thus improve the fabrication efficiency of precursor powder. The phase, microstructure and superconducting properties of Bi-2212 precursor powders and wires were characterized by X-ray diffraction, scanning electron microscopy and four-probe method, respectively. The thermal behavior, surface area and particle size of powders were also discussed. The results indicated that large surface area and small particle size might improve the reactivity and uniformity of powders. These properties were beneficial for the rapid and homogeneous formation of Bi-2212. High-purity crystallized Bi-2212 powders without Bi-2201 and alkaline-earth cuprates phases could be achieved. Furthermore, multi-filamentary Bi-2212 wires with OFD powders showed good microstructures without noticeable pores and large secondary particles. Therefore, high engineering critical current densities (Je) of 1619 A/mm2 and critical current densities (Jc) of 7039 A/mm2 were obtained in Bi-2212 wires at 4.2K, self field. It indicated that the oxalate freeze drying method would be a potential candidate for the mass production of high performance Bi-2212 wires.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号