首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25165篇
  免费   3875篇
  国内免费   1457篇
电工技术   237篇
技术理论   3篇
综合类   1334篇
化学工业   11191篇
金属工艺   843篇
机械仪表   363篇
建筑科学   1387篇
矿业工程   440篇
能源动力   753篇
轻工业   2164篇
水利工程   254篇
石油天然气   1432篇
武器工业   1129篇
无线电   3206篇
一般工业技术   4556篇
冶金工业   526篇
原子能技术   205篇
自动化技术   474篇
  2024年   48篇
  2023年   710篇
  2022年   531篇
  2021年   955篇
  2020年   1079篇
  2019年   1076篇
  2018年   948篇
  2017年   1055篇
  2016年   1086篇
  2015年   1217篇
  2014年   1893篇
  2013年   1775篇
  2012年   1992篇
  2011年   2094篇
  2010年   1619篇
  2009年   1632篇
  2008年   1290篇
  2007年   1611篇
  2006年   1464篇
  2005年   1250篇
  2004年   997篇
  2003年   896篇
  2002年   577篇
  2001年   502篇
  2000年   426篇
  1999年   300篇
  1998年   217篇
  1997年   202篇
  1996年   166篇
  1995年   153篇
  1994年   138篇
  1993年   98篇
  1992年   115篇
  1991年   73篇
  1990年   50篇
  1989年   51篇
  1988年   20篇
  1987年   34篇
  1986年   23篇
  1985年   30篇
  1984年   19篇
  1983年   19篇
  1982年   17篇
  1981年   4篇
  1980年   8篇
  1979年   5篇
  1976年   2篇
  1974年   2篇
  1964年   2篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Metal organic frameworks (MOFs) containing zirconium secondary building units (SBUs) in UiO-67 and related MOFs, are highly active for neutralizing both the chemical warfare agents and simulants, such as dimethyl methylphosphonate (DMMP). However, two recent publications gave conflicting reports of DMMP reaction with UiO-67 under ultra high vacuum (UHV) conditions, with one reporting chemisorption and reaction (Wang et al., J Phys Chem C, 2017, 121, 11261–11272) and the other reporting only physisorption and reversible desorption (Ruffley et al., J Phys Chem C, 2019, 123, 19748–19758) from very similar temperature programmed desorption experiments. We show that the discrepancy between these experiments may be explained by different levels of missing linker defects in the UiO-67 samples. We present density functional theory calculations showing that SBU sites having two-adjacent missing linkers exhibit reaction barriers that are about 30 kJ/mol lower than SBU sites having a single missing linker. We also show that topology of the undercoordinated sites plays an important role in the reaction barrier under UHV conditions.  相似文献   
2.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
3.
Since the discovery in 1922 of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl stable free radical (DPPH·), the chemistry of such open-shell compounds has developed continuously, allowing for both theoretical and practical advances in the free radical chemistry area. This review presents the important, general and modern aspects of the chemistry of hydrazyl free radicals and the science behind it.  相似文献   
4.
Amides from indole-3-glyoxylic acid and 4-benzoyl-2-methylpiperazine, which are related to entry inhibitors developed by Bristol-Myers Squibb (BMS), have been synthesized with aliphatic chains located at the C7 position of the indole ring. These spacers contain an azido group suitable for the well-known Cu(I)-catalyzed (3+2)-cycloaddition or an activated triple bond for the nucleophilic addition of thiols under physiological conditions. Reaction with polyols (β-cyclodextrin and hyperbranched polyglycerol) decorated with complementary click partners has afforded polyol-BMS-like conjugates that are not cytotoxic (TZM.bl cells) and retain the activity against R5-HIV-1NLAD8 isolates. Thus, potential vaginal microbicides based on entry inhibitors, which can be called of 4th generation, are reported here for the first time.  相似文献   
5.
The luminescent hydrogen-bonded organic framework (HOF) based films have become one of the most remarkable materials for optical application, thus, developing facile synthesis methods and establishing multifunctional applications for HOF-based luminescent materials are essential. Herein, a dual-emitting Eu3+-functionalized HOF hydrogel film ( 1 ) is fabricated successfully. 1 emits a blue-green long afterglow when turning off the UV lamp, and the long afterglow lifetime gets to 1.99 s. 1 performs great selectivity, high sensitivity, and low detection limit toward ofloxacin and flumequine, and the sensing toward ofloxacin and flumequine is in accord with the chroma and ratio modes. The fluorescent response mechanisms of 1  toward ofloxacin and flumequine are investigated in depth, which are further utilized to build an anticounterfeiting platform with high-level security. The film-based anticounterfeiting platform can conduct information encryption on demand inline with different fluorescent responses and can also fetch specific information by controlling the long afterglow intensity and excited light. This study not only provides a representative case of the fabrication of dual-emitting Eu3+-functionalized HOF-based hydrogel film but also opens the possibility of HOF-based film as intelligent luminescent materials with multifunctionalities.  相似文献   
6.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
7.
A series of tetrathiophene-based fully non-fused ring acceptors (4T-1, 4T-2, 4T-3, and 4T-4), which can be paired with the star donor polymer PBDB-T to fabricate highly efficient organic solar cells are developed. Tailoring the size of lateral chains can tune the solubility and packing mode of acceptor molecules in neat and blend films. It is found that the incorporation of 2-ethylhexyl chains can effectively change the compatibility with the donor polymer PBDB-T, and an encouraging power conversion efficiency of 10.15% is accomplished by 4T-3-based organic solar cells. It also presents good compatibility with the other polymer donor and an even higher power conversion efficiency (PCE) of 12.04% is achieved based on D18:4T-3 blend, which is the champion PCE for the fully non-fused acceptors. Importantly, these inexpensive tetrathiophene fully non-fused ring acceptors provide cost-effective photovoltaic performance. The results demonstrate a high photovoltaic performance from synthetically inexpensive materials could be achieved by the rational design of non-fused ring acceptor molecules.  相似文献   
8.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
9.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
10.
Recent studies have demonstrated that dihydrophenazine (Pz) with high redox-reversibility and high theoretical capacity is an attractive building block to construct p-type polymer cathodes for dual-ion batteries. However, most reported Pz-based polymer cathodes to date still suffer from low redox activity, slow kinetics, and short cycling life. Herein, a donor–acceptor (D–A) Pz-based conjugated microporous polymer (TzPz) cathode is constructed by integrating the electron-donating Pz unit and the electron-withdrawing 2,4,6-triphenyl-1,3,5-triazine (Tz) unit into a polymer chain. The D–A type structure enhances the polymer conjugation degree and decreases the band gap of TzPz, facilitating electron transportation along the polymer skeletons. Therefore the TzPz cathode for dual-ion battery shows a high reversible capacity of 192 mAh g−1 at 0.2 A g−1 with excellent rate performance (108 mAh g−1 at 30 A g−1), which is much higher than that of its counterpart polymer BzPz produced from 1,3,5-triphenylbenzene (Bz) and Pz (148 and 44 mAh g−1 at 0.2 and 10 A g−1, respectively). More importantly, the TzPz cathode also shows a long and stable cyclability of more than 10 000 cycles. These results demonstrate that the D–A structural design is an efficient strategy for developing high-performance polymer cathodes for dual-ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号