首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97224篇
  免费   9183篇
  国内免费   5048篇
电工技术   3719篇
综合类   6633篇
化学工业   29081篇
金属工艺   15435篇
机械仪表   3159篇
建筑科学   6930篇
矿业工程   2446篇
能源动力   3171篇
轻工业   9906篇
水利工程   1299篇
石油天然气   4855篇
武器工业   858篇
无线电   4134篇
一般工业技术   11696篇
冶金工业   5447篇
原子能技术   644篇
自动化技术   2042篇
  2024年   211篇
  2023年   1617篇
  2022年   2684篇
  2021年   3436篇
  2020年   3230篇
  2019年   2869篇
  2018年   2786篇
  2017年   3613篇
  2016年   3563篇
  2015年   3665篇
  2014年   5007篇
  2013年   5311篇
  2012年   6409篇
  2011年   7270篇
  2010年   5349篇
  2009年   5906篇
  2008年   4794篇
  2007年   6320篇
  2006年   5925篇
  2005年   5033篇
  2004年   4204篇
  2003年   3721篇
  2002年   3139篇
  2001年   2693篇
  2000年   2265篇
  1999年   1885篇
  1998年   1582篇
  1997年   1244篇
  1996年   1129篇
  1995年   924篇
  1994年   817篇
  1993年   593篇
  1992年   527篇
  1991年   403篇
  1990年   284篇
  1989年   203篇
  1988年   137篇
  1987年   118篇
  1986年   83篇
  1985年   68篇
  1984年   70篇
  1983年   37篇
  1982年   61篇
  1981年   50篇
  1980年   49篇
  1979年   28篇
  1978年   25篇
  1977年   20篇
  1976年   20篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Eliminating the gold preg-robbing effect of carbonaceous matter in carbonaceous gold ores is crucial for gold leaching. In this study, suspension oxidation roasting was proposed to accelerate the decarbonization of carbonaceous gold ore. The characteristics of oxidation reaction process and gas release were analyzed by TG-DTA-FTIR. The phase transformation and microstructure evolution of samples during roasting were analyzed by XRD, SEM and BET. The results show that the gold preg-robbing effect was eliminated after the gasification of carbonaceous matter, and the CaO generated by decomposition of carbonates can effectively capture the SO2. After roasting for 75 min at 650 °C in a 20% O2 atmosphere, the total carbon removal rate reached 99.42%, the distribution of exposed gold increased from 28.85% to 77.10% and the gold leaching efficiency increased from 4.55% to 84.83%. In addition, about 70% sulfur was mainly fixed in the roasted products in the form of sulfate. Therefore, the suspension oxidation roasting process is an efficient and clean pretreatment method for carbonaceous gold ores.  相似文献   
2.
In a narrow channel, the apparent relative viscosity of a suspension with finite-size particles is strongly dependent on its microscopic particle arrangement. Relative viscosity increases when suspended particles flow near the channel wall; thus, a suspension in a narrow channel does not always exhibit the same rheological properties even if the concentration is the same. In this study, we focus on the inertia and concentration of particles in a narrow channel and consider their effects on the microscopic particle arrangement and macroscopic suspension rheology. Two-dimensional pressure-driven suspension flow simulations were performed using a two-way coupling scheme, and normalized particle density distribution (PDD) were implemented to consider their particle arrangements. The results demonstrated that the velocity profiles for the particle suspension were changed by the Reynolds number and particle concentration because of the interactions between particles according to the power-law index. These changes affected the particle equilibrium positions in the channel, and the subsequent changes in solvent layer thickness caused changes in the macroscopic apparent viscosity. The behavior of microscopic particles played important roles in determining macroscopic rheology. Thus, we have confirmed that a normalized PDD can be used to estimate and assess the macroscopic rheology of a suspension.  相似文献   
3.
The present work addresses the potentialities of Pt–Ru nanoparticles deposited on a graphene oxide (RGO) and TiO2 composite support towards electrochemical oxidation of ethanol in acidic media relevant for fuel cell applications. To immobilize platinum–ruthenium bimetallic nanoparticles on to an RGO-TiO2 nanohybrid support a simple solution-phase chemical reduction method is utilized. An examination using electron microscopy and energy dispersive X-ray spectroscopy (EDS) indicated that Pt–Ru particles of 4–8 nm in diameter are dispersed on RGO-TiO2 composite support. The corresponding Pt–Ru/RGO-TiO2 nanocomposite electrocatalyst was studied for the electrochemical oxidation of ethanol in acidic media. Compared to the commercial Pt–Ru/C and Pt/C catalysts, Pt–Ru/RGO-TiO2 nanocomposite yields higher mass-specific activity of about 1.4 and 3.2 times, respectively towards ethanol oxidation reaction (EOR). The synergistic boosting provided by RGO-TiO2 composite support and Pt–Ru ensemble together contributed to the observed higher EOR activity and stability to Pt–Ru/RGO-TiO2 nanocomposite compared with other in-house synthesized Pt–Ru/RGO, Pt/RGO and commercial Pt–Ru/C and Pt/C electrocatalysts. Further optimization of RGO-TiO2 composite support provides opportunity to deposit many other types of metallic nanoparticles onto it for fuel cell electrocatalysis applications.  相似文献   
4.
To explore the feasibility and related mechanism of MFC biosensor for wastewater detection under the action of combined heavy metals. Cyclic voltammetry (CV) and scanning electrochemical impedance spectroscopy (EIS) were used to explore the related bioelectrochemical process. The response of the reactor to single/combined heavy metals, low/high heavy metal concentrations, and the differences in ohmic resistance (Rs) and charge transfer resistance (Rct) were investigated using Ni as the core heavy metal and the combined action of Cd, Cu and Zn. The results indicated that there was a linear relationship between the concentration and output voltage of the MFC biosensor under the action of combined heavy metals (R2 = 0.8803–0.973). However, the internal resistance (Rint) of the MFC biosensor under the action of single heavy metal was far less than that of the combined heavy metal group, and the power density (19.849 W m?3) was 4 times that of the combined heavy metal group (3.109–4.589 W m?3). The Rs of the biosensors in the combined heavy metal group were 0.868Ω and 0.860, which were higher than 0.768Ω of the single heavy metal sensor. With the increase of the concentration of heavy metals in the influent, the increase of Rct was more obvious in the combined group, while the Rs in the single group significantly increased (P < 0.05). The results imply that it is possible for MFC biosensors to be used in the detection of actual water polluted by various heavy metals, but the biosensor performance is mainly limited by Rct, which needs to be further improved.  相似文献   
5.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
6.
This study was conducted to evaluate the effect of red-wine grape pomaces on the quality and sensory attributes of beef hamburger patties. Both phenolic content and antioxidant activity were assessed using Syrah, Merlot and Cabernet Sauvignon pomaces. Following the assessment, hamburger patties were prepared with Merlot pomace at 0%, 2% and 4% for the patty quality and sensory attributes. Grape seeds possessed significantly higher phenolics and antioxidant activities over the seedless pomace (P < 0.05), whereas no significant difference was found for phenolics and antioxidant activities within the seeds and seedless pomaces. The patty pH decreased as the pomace was added for 2% and 4%. Colour values (L*, a* and b*) of patties lowered as the pomace was added. Allo-Kramer shear force and hardness values increased while cooking yield decreased (P < 0.05) with the addition of pomace. No significant difference between control and Merlot patties was found for flavour, juiciness and colour, whereas lower sensory attributes were observed for texture, taste and overall acceptability. It is observed that the addition of fermented red-wine grape pomace provides hamburger patties with health promoting factors such as antioxidant and other functional components, but it also provided darker, sourer and lower cooking yield.  相似文献   
7.
《Journal of dairy science》2022,105(5):3926-3938
Sensory and physical properties of 2 lemon-flavored beverages with 5% and 7.5% wt/wt nonfat dry milk (NFDM) at pH 2.5 were studied during storage. The 2 beverages had similar volatile compounds, but the 5% NFDM had higher aroma and lemon flavor, with a preferred appearance by consumers due to the lower turbidity and viscosity. After 28 d of storage at 4°C, lemon flavor decreased in the 5% NFDM beverage but was still more intense than the 7.5% one. During 70 d of storage, no microorganisms were detected, and the beverages were more stable when stored at 4°C than at room temperature according to changes of physical properties measured for appearance, turbidity, color, particle size, zeta potential, rheological properties, and transmission electron microscopy morphology. Findings of the present study suggest that NFDM may be used at 5% wt/wt to produce stable acidic dairy beverages with low turbidity when stored at 4°C.  相似文献   
8.
《Ceramics International》2022,48(20):29862-29872
Thermal shock parameters (R, R''', R'''' and Rst) of MgAlON–MgO composites obtained with additions of spent MgO–C brick were calculated using measured mechanical properties and thermal expansion coefficient, determining their resistance to fracture initiation and crack propagation. The cyclic thermal shock experiments of MgAlON–MgO composites performed from 1398 K to ambient temperature indicate that as number of thermal shock cycle increases, retained strength ratio of MgAlON and MgAlON–4.2 wt%MgO sharply decrease and then keep constant, while that of MgAlON–10.5 wt%MgO and MgAlON–15.7 wt%MgO slowly decrease. The reason for the difference is that MgAlON and MgAlON–4.2 wt%MgO show low value of R''' and R'''', and high value of R and Rst. Moreover, precipitation of impurity containing Fe may play a positive role in improvement of thermal shock resistance of MgAlON–MgO composites. MgAlON?4.2 wt%MgO has the maximum retained strength (55 MPa) even after 5 thermal shock cycles, which is expected to be used in the metallurgical industry.  相似文献   
9.
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications.  相似文献   
10.
《Ceramics International》2022,48(14):20041-20052
The growing demand for radiation-resistant optical glasses for space and nuclear radiation applications has attracted significant research interest. However, radiation-resistant fluorophosphate glasses have been poorly studied. In this work, we report on the tailoring and performance of radiation-resistant fluorophosphate glasses that contained cerium through codoping with Sb2O3 and Bi2O3. The physical properties, optical properties, microstructure, and defects of fluorophosphate glasses were investigated using transmittance measurements, absorption measurements, as well as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results showed that the radiation resistance of all codoped fluorophosphate glasses was better than the undoped cerium-containing fluorophosphate glasses after 10–250 krad(Si) irradiation. Especially in glasses doped with Bi2O3, the optical density increment at 385 nm was only 0.1482 after 250 krad(Si) irradiation. The CeO2 prevented the development of phosphate-related oxygen hole center (POHC) defects, whereas further codoping with Bi2O3 suppressed the formation of oxygen hole center (OHC) and POEC defects, reducing the breaking of phosphate chains caused by CeO2. Bi3+ is more likely than Sb3+ to change the valence, affecting the transition equilibrium of intrinsic defects and reducing the concentration of defects produced by irradiation. When codoping with Sb2O3 and Bi2O3, Bi2O3 does not enhance radiation resistance owing to the scission effect of Sb2O3 on the phosphate chain, which is not conducive to the radiation resistance of glasses. This indicates that the cerium-containing fluorophosphate glasses doped with Bi2O3 can effectively suppress the defects caused by irradiation and improve the radiation resistance of the glasses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号