首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57400篇
  免费   4671篇
  国内免费   4275篇
电工技术   3471篇
综合类   3517篇
化学工业   12040篇
金属工艺   16093篇
机械仪表   2187篇
建筑科学   5170篇
矿业工程   1287篇
能源动力   1677篇
轻工业   2474篇
水利工程   991篇
石油天然气   4258篇
武器工业   377篇
无线电   2244篇
一般工业技术   6544篇
冶金工业   2658篇
原子能技术   566篇
自动化技术   792篇
  2024年   135篇
  2023年   965篇
  2022年   1615篇
  2021年   2217篇
  2020年   2064篇
  2019年   1766篇
  2018年   1590篇
  2017年   2212篇
  2016年   2151篇
  2015年   2126篇
  2014年   3184篇
  2013年   3413篇
  2012年   3853篇
  2011年   4466篇
  2010年   3252篇
  2009年   3619篇
  2008年   2828篇
  2007年   3465篇
  2006年   3470篇
  2005年   2821篇
  2004年   2565篇
  2003年   2249篇
  2002年   1855篇
  2001年   1544篇
  2000年   1280篇
  1999年   1114篇
  1998年   829篇
  1997年   747篇
  1996年   565篇
  1995年   572篇
  1994年   445篇
  1993年   316篇
  1992年   253篇
  1991年   177篇
  1990年   141篇
  1989年   131篇
  1988年   80篇
  1987年   57篇
  1986年   34篇
  1985年   20篇
  1984年   23篇
  1983年   16篇
  1982年   23篇
  1981年   13篇
  1980年   25篇
  1979年   9篇
  1978年   7篇
  1960年   3篇
  1959年   10篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
To explore the feasibility and related mechanism of MFC biosensor for wastewater detection under the action of combined heavy metals. Cyclic voltammetry (CV) and scanning electrochemical impedance spectroscopy (EIS) were used to explore the related bioelectrochemical process. The response of the reactor to single/combined heavy metals, low/high heavy metal concentrations, and the differences in ohmic resistance (Rs) and charge transfer resistance (Rct) were investigated using Ni as the core heavy metal and the combined action of Cd, Cu and Zn. The results indicated that there was a linear relationship between the concentration and output voltage of the MFC biosensor under the action of combined heavy metals (R2 = 0.8803–0.973). However, the internal resistance (Rint) of the MFC biosensor under the action of single heavy metal was far less than that of the combined heavy metal group, and the power density (19.849 W m?3) was 4 times that of the combined heavy metal group (3.109–4.589 W m?3). The Rs of the biosensors in the combined heavy metal group were 0.868Ω and 0.860, which were higher than 0.768Ω of the single heavy metal sensor. With the increase of the concentration of heavy metals in the influent, the increase of Rct was more obvious in the combined group, while the Rs in the single group significantly increased (P < 0.05). The results imply that it is possible for MFC biosensors to be used in the detection of actual water polluted by various heavy metals, but the biosensor performance is mainly limited by Rct, which needs to be further improved.  相似文献   
2.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
3.
《Ceramics International》2022,48(20):29862-29872
Thermal shock parameters (R, R''', R'''' and Rst) of MgAlON–MgO composites obtained with additions of spent MgO–C brick were calculated using measured mechanical properties and thermal expansion coefficient, determining their resistance to fracture initiation and crack propagation. The cyclic thermal shock experiments of MgAlON–MgO composites performed from 1398 K to ambient temperature indicate that as number of thermal shock cycle increases, retained strength ratio of MgAlON and MgAlON–4.2 wt%MgO sharply decrease and then keep constant, while that of MgAlON–10.5 wt%MgO and MgAlON–15.7 wt%MgO slowly decrease. The reason for the difference is that MgAlON and MgAlON–4.2 wt%MgO show low value of R''' and R'''', and high value of R and Rst. Moreover, precipitation of impurity containing Fe may play a positive role in improvement of thermal shock resistance of MgAlON–MgO composites. MgAlON?4.2 wt%MgO has the maximum retained strength (55 MPa) even after 5 thermal shock cycles, which is expected to be used in the metallurgical industry.  相似文献   
4.
《Ceramics International》2022,48(14):20041-20052
The growing demand for radiation-resistant optical glasses for space and nuclear radiation applications has attracted significant research interest. However, radiation-resistant fluorophosphate glasses have been poorly studied. In this work, we report on the tailoring and performance of radiation-resistant fluorophosphate glasses that contained cerium through codoping with Sb2O3 and Bi2O3. The physical properties, optical properties, microstructure, and defects of fluorophosphate glasses were investigated using transmittance measurements, absorption measurements, as well as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results showed that the radiation resistance of all codoped fluorophosphate glasses was better than the undoped cerium-containing fluorophosphate glasses after 10–250 krad(Si) irradiation. Especially in glasses doped with Bi2O3, the optical density increment at 385 nm was only 0.1482 after 250 krad(Si) irradiation. The CeO2 prevented the development of phosphate-related oxygen hole center (POHC) defects, whereas further codoping with Bi2O3 suppressed the formation of oxygen hole center (OHC) and POEC defects, reducing the breaking of phosphate chains caused by CeO2. Bi3+ is more likely than Sb3+ to change the valence, affecting the transition equilibrium of intrinsic defects and reducing the concentration of defects produced by irradiation. When codoping with Sb2O3 and Bi2O3, Bi2O3 does not enhance radiation resistance owing to the scission effect of Sb2O3 on the phosphate chain, which is not conducive to the radiation resistance of glasses. This indicates that the cerium-containing fluorophosphate glasses doped with Bi2O3 can effectively suppress the defects caused by irradiation and improve the radiation resistance of the glasses.  相似文献   
5.
The present study investigates the combined influence of Channel to Rib Width (CRW) ratio and clamping pressure on the structure and performance of High Temperature-Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) using a three-dimensional numerical model developed previously. It also considers the impact of interfacial contact resistance between the Gas Diffusion Layer (GDL) and Bipolar Plate (BPP). The structural analysis of the single straight channel HT-PEMFC geometry shows that the von-Mises stress greatly increases in the GDL under the ribs as the CRW ratio increases resulting in considerably high deformation. The cell performance analysis depicts the significance of ohmic resistance and concentration polarization for different CRW ratios, particularly at higher operating current densities. However, in low to medium current density regions, the CRW ratio has little influence on cell performance. A substantial impact on the species, overpotential, and current distributions is observed. The findings also reveal that the CRW ratio significantly affects the temperature distribution in the cell.  相似文献   
6.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   
7.
8.
In this work, coupling effects of water content, temperature, oxygen density, and polytetrafluoroethylene (PTFE) loading on oxygen transport through an ionomer thin film on a platinum surface in a catalyst layer of a proton exchange membrane (PEM) fuel cell are investigated using molecular dynamics approach. Taguchi orthogonal algorithm is employed to comprehensively analyze the coupling effects in a limited number of cases. It is found that the effect of operation temperature is the weakest among the four factors, which has the smallest effect index 14.4. Coupling effects including the PTFE loadings on the oxygen transfer through the ionomer thin film is uncovered. Less PTFE loadings should be beneficial for the oxygen transfer. The chemical potential gradient is considered as the major driven force for the oxygen transport through the ionomer thin film, and oxygen density is the dominating factor, significantly affecting the chemical potential in the thin film.  相似文献   
9.
Catalyst slurries (inks) were prepared with and without thermal treatment to determine the support/ionomer structures and interactions in the catalyst layer (CL) which impact on membrane electrode performance and durability. The thermal treatment of the ink has a nominal effect on the ionomer/support structure in which the carbon support is non-graphitised. The agglomerate/aggregate structures have a high degree of support/ionomer interface and sufficient macroporosity for water movement in the CL. This improves the membrane electrode assembly (MEA) performance, but also accelerates electrochemical carbon degradation. Thermal treatment of graphitised support-containing inks resulted in increased performance facilitated by a larger support/ionomer interface. Without thermal treatment, the more hydrophobic support would form aggregate structures in which water contact was restricted, limiting proton transfer, isolating catalyst, decreasing performance. The water limited access, would however, prolong stability during accelerates carbon degradation. The electrochemical properties were studied using full and half MEA cells.  相似文献   
10.
Transition metal-based electrocatalysts supported on carbon substrates face the challenges of anodic corrosion of carbon during oxygen evolution reaction at high oxidation potential. The role of electrophilic functional groups (carbonyl, pyridinic, thiol, etc.) incorporated in graphene oxide has been studied towards the anodic corrosion resistance. Heteroatom functionalized carbon supports possess modified electronic properties, surface oxygen content, and hydrophilicity, which are crucial in governing electrochemical corrosion in the alkaline oxidative environment. Evidently, electron-withdrawing groups in NGO support (pyridinic, cyano, nitro, etc) and its lower oxygen content impart maximum corrosion resistance and anodic stability in comparison to the other sulfur-doped and co-doped graphene oxide support. In this report, we establish the baseline evaluation of carbon-supported OER electrocatalysts by a systematic analysis of activity and substrate corrosion resistance. The result of this study establishes the role of surface composition of the doped supports while for designing a stable, corrosion-resistant OER electrocatalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号