首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29627篇
  免费   2453篇
  国内免费   1564篇
电工技术   875篇
综合类   1543篇
化学工业   10933篇
金属工艺   2277篇
机械仪表   1100篇
建筑科学   663篇
矿业工程   720篇
能源动力   1017篇
轻工业   2306篇
水利工程   179篇
石油天然气   1073篇
武器工业   134篇
无线电   2960篇
一般工业技术   4783篇
冶金工业   2064篇
原子能技术   287篇
自动化技术   730篇
  2024年   68篇
  2023年   472篇
  2022年   729篇
  2021年   914篇
  2020年   834篇
  2019年   694篇
  2018年   702篇
  2017年   878篇
  2016年   888篇
  2015年   990篇
  2014年   1418篇
  2013年   1611篇
  2012年   2056篇
  2011年   2276篇
  2010年   1619篇
  2009年   1810篇
  2008年   1448篇
  2007年   2007篇
  2006年   1854篇
  2005年   1629篇
  2004年   1398篇
  2003年   1277篇
  2002年   1062篇
  2001年   918篇
  2000年   794篇
  1999年   563篇
  1998年   464篇
  1997年   393篇
  1996年   326篇
  1995年   269篇
  1994年   200篇
  1993年   168篇
  1992年   188篇
  1991年   170篇
  1990年   174篇
  1989年   135篇
  1988年   47篇
  1987年   24篇
  1986年   25篇
  1985年   14篇
  1984年   17篇
  1983年   16篇
  1982年   19篇
  1981年   10篇
  1980年   10篇
  1979年   16篇
  1978年   7篇
  1975年   7篇
  1974年   8篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
2.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
3.
SiC is a promising functional ceramic material with many great properties. High concentrated SiC slurry with excellent rheology and stability is required in some processes of ceramic forming. In this work, the dispersion of SiC powders was obviously improved by ternary modifiers: γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560), sodium humate and sodium dodecyl sulfate (SDS). Modified SiC slurry showed the lowest viscosity of 0.168 Pa s at a solid content of 50 vol%. The maximum absolute value of zeta potential of SiC increased from 47.3 to 61.6 mV by modification. Sedimentation experiments showed that a highly stable suspension of modified SiC was obtained at pH 10. SiC green body with high density of 2.643 g/cm3 was prepared with modified powders by slip casting. X-ray photoelectron spectra (XPS) and thermogravimetry (TG) measurements indicated the adsorption of modifiers on SiC surface. Therefore, modified SiC powders could stably disperse in aqueous media due to the increase of electrosteric repulsion between particles. The novel strategy used in this study could further improve the dispersion of SiC powders.  相似文献   
4.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
5.
《Ceramics International》2022,48(7):9426-9433
A gradient porous ceramic membrane with surface super-hydrophilic and underwater super-oleophobic performance was prepared by combining hydrogel directional freezing method and low temperature oxidation process. The effects of solid contents and sintering temperature on the ceramic membrane matrix were examined. The reaction time and synthesis temperature on the TiO2 nanowire array were also evaluated. In addition, the related effects on pore size distribution, permeation flux, contact angle, and oil-in-water emulsion separation were systematically investigated. The ceramic membrane matrix pore size changed from 0.5 μm to 25 μm gradually, indicating the gradient structure controlled by the growth of ice. The super-hydrophilic and underwater super-oleophobic performance of ceramic membrane surface was obtained with surface modification by TiO2 nanowire array, and the surface water contact angle and underwater oil contact angle were less than 5° and over 158°, respectively. The bonding strength between TiO2 nanowire and ceramic membrane matrix was high enough to withstand ultrasonic waves. The ceramic membrane modified with TiO2 nanowire array was used for 1000 ppm diesel oil-in-water emulsion separation, and the stable separation efficiency and flux were about 97% and 100–200 L/(m2 h bar) even after 10 filtration cycles.  相似文献   
6.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
7.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
8.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
9.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
10.
Carbon fibers (CFs) are a promising candidate as electrode materials for flexible supercapacitors given its light weight and moderate cost. In this study, the lignin used was partially separated from kraft bamboo pulping black liquor and the higher molecular weight fraction, unavoidably contains a small amount of silicon compounds, so named silicon-contained lignin. Novel CFs were prepared using commercial polyacrylonitrile (PAN) and the lignin by electrospinning and further carbonization. Even in the presence of silicon compounds, the fibrous morphology of precursor fibers was significantly good, and the CFs with uniform fiber diameter and high specific surface area up to 182 m2/g were obtained with an increase in silicon-contained lignin. The CFs fabricated from silicon-contained lignin and commercial PAN had higher specific capacitance (22.20 mF/cm2 at 10 mA/cm2) and superb cycling stability (94.21%) than that from silicon-free lignin or pure PAN separately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号