首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1318篇
  免费   64篇
  国内免费   52篇
电工技术   171篇
综合类   62篇
化学工业   127篇
金属工艺   333篇
机械仪表   44篇
建筑科学   47篇
矿业工程   51篇
能源动力   15篇
轻工业   11篇
水利工程   2篇
石油天然气   9篇
武器工业   11篇
无线电   31篇
一般工业技术   171篇
冶金工业   339篇
原子能技术   5篇
自动化技术   5篇
  2024年   3篇
  2023年   15篇
  2022年   34篇
  2021年   27篇
  2020年   23篇
  2019年   20篇
  2018年   28篇
  2017年   26篇
  2016年   26篇
  2015年   27篇
  2014年   53篇
  2013年   45篇
  2012年   71篇
  2011年   82篇
  2010年   50篇
  2009年   75篇
  2008年   59篇
  2007年   85篇
  2006年   100篇
  2005年   76篇
  2004年   79篇
  2003年   82篇
  2002年   54篇
  2001年   58篇
  2000年   42篇
  1999年   44篇
  1998年   22篇
  1997年   23篇
  1996年   19篇
  1995年   24篇
  1994年   22篇
  1993年   9篇
  1992年   11篇
  1991年   5篇
  1990年   4篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1951年   1篇
排序方式: 共有1434条查询结果,搜索用时 109 毫秒
1.
采用化学镀方法在钕铁硼表面分别制备Ni-P合金镀层、Ni-Mo-P合金镀层、Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层,并研究了不同化学镀层在模拟海洋大气环境中的腐蚀行为。结果表明:Ni-P合金镀层、Ni-Mo-P合金镀层、Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层都完整覆盖钕铁硼表面,它们的粗糙度差别不大,在模拟海洋大气环境中的腐蚀失重都低于钕铁硼的腐蚀失重,容抗弧半径增大且电荷转移电阻有不同程度的提高。与Ni-P合金镀层和Ni-Mo-P合金镀层相比,Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层具有优良的耐腐蚀性能,原因在于PTFE颗粒较均匀的沉积在镀层表面增加一道屏蔽层,也起到阻碍腐蚀介质渗透腐蚀的作用。尤其是Ni-Mo-P/PTFE复合镀层,其表面更致密,PTFE颗粒沉积更均匀,能更有效延缓腐蚀介质与钕铁硼接触,显著提高钕铁硼在模拟海洋大气环境中的耐腐蚀性能。  相似文献   
2.
In this study, the porous Cu-Al fiber sintered felt (PCAFSF) was fabricated by low temperature solid-phase sintering method. The laminated PCAFSF as the catalyst support was used for cylindrical methanol steam reforming microreactor for hydrogen production. The two-layer impregnation method was employed to coat the Cu/Zn/Al/Zr catalyst on the PCAFSF. The material composition, specific surface area and catalyst loading of PCAFSF were also measured. The effect of the fiber material, surface morphology and porosity on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCAFSF demonstrated much higher methanol conversion and H2 flow rate compared to the porous Cu fiber sintered felt (PCFSF) and porous Al fiber sintered felt (PAFSF) having the same porosity. Furthermore, the rough PCAFSF showed much higher methanol conversion and H2 flow rate compared to the smooth PCAFSF. In case of the PCAFSF, the methanol conversion and H2 flow rate were increased with the decrease of Cu fiber weight and the increase of Al fiber weight. The best reaction performance of microreactor for hydrogen production was obtained using the three layer PCAFSFs with 80% porosity and 1.12 g Cu fiber/1.02 g Al fiber.  相似文献   
3.
A macroscopic numerical method is proposed to study the flow distribution uniformity of a novel porous copper fiber sintered felt (PCFSF), which has gradient porosities and was developed as the methanol steam reforming micro-reactor catalyst support for hydrogen production for fuel cell applications. The macroscopic porous media developed by the ANSYS/FLUENT software is used to represent the PCFSF. Our results indicate that the gradient porosity can reshape the flow distribution of PCFSFs greatly, thus producing significant influence on their performance. It is further revealed that, for a PCFSF with a determined gradient porosity configuration but different reactant feed directions, the velocity uniformity can be used as a quantitative criterion to evaluate the performance of hydrogen production. Furthermore, new gradient PCFSFs are produced according to the flow distribution of original gradient PCFSFs. The preliminary experimental results of the new gradient PCFSFs of 0.8-0.9-0.7 and 0.7-0.9-0.8 exhibit better methanol conversion and H2 flow rate. This indicates that the numerical method can be used for the optimization of PCFSFs' gradient porosity configuration, which consists of the shape and position of the interfaces between different porosity portions, the number of interfaces and the porosity distribution in different portions.  相似文献   
4.
The Young modulus of partially and fully sintered alumina ceramics, obtained by firing to different temperatures (range 1200–1600°C), has been determined via impulse excitation, and the evolution of Young’s modulus of partially sintered alumina with temperature has been monitored from room temperature to 1600°C. As expected, the room-temperature Young modulus of the partially sintered materials is lower than all theoretical predictions. With increasing temperature Young’s modulus decreases, until the original firing temperature is exceeded and sintering (densification) continues, resulting in a steep Young’s modulus increase. During heating and cooling the temperature dependence obeys a master curve for alumina, unless the temperature of the original firing is excessively low.  相似文献   
5.
采用浸涂方式在烧结钕铁硼磁体表面制备CeO2/硅烷复合涂层,研究了硅烷水溶液中纳米CeO2颗粒掺杂量对复合涂层性能的影响,通过扫描电镜、能谱分析仪、动电位极化曲线及中性盐雾试验对所制备的CeO2/硅烷复合涂层的形貌、元素分布以及耐腐蚀性能进行分析。结果表明:纳米CeO2颗粒的添加增强了涂层的硬度,提高了硅烷涂层的屏蔽性能,延长了腐蚀溶液渗入硅烷涂层的腐蚀通道,复合涂层耐中性盐雾试验能力可达24 h。但由于纳米颗粒只是机械的镶嵌到复合涂层中,不会改变硅烷涂层在固化过程中醇基之间脱水缩合反应的本质,在NaCl溶液中,复合涂层依然会形成高低不同的交联密度区,CeO2/硅烷复合涂层失效的主要原因依然是在交联密度低的区域首先水解溶解导致的。  相似文献   
6.
《Ceramics International》2019,45(16):19596-19609
Recently, detonation sintered nano-diamond/alumina composites have appeared and attracted much theoretical and experimental attention. Inspired by core hypothesis of diamond, molecular dynamics was used to analyze the probability of phase transformation between diamond and graphite. The results showed that the very short duration of heating and cooling was beneficial to the stability of nano-diamond in an environment of high temperature. The higher the pressure is, the more stable the diamond would be under high temperature. Therefore, under the condition of short time, high temperature and high pressure, the probability of diamond-graphite transition of detonation sintered nano-diamond/alumina composites was only equal to 11 parts per million. The probability of phase transformation from nano-diamond to graphite has been very low and the test experiences are in good agreement with the calculated results. Compared with other synthetic methods, the method of detonation sintered nano-diamond/alumina composites with high temperature, high pressure and short duration has the advantages of operation, environmentally benign and high yields.  相似文献   
7.
Al coated NdFeB magnets obtained by vacuum evaporation technique were densified by high energy ball milling method.The surface morphology,metal composition and micro structure of the coatings were characterized by scanning electron microscopy,X-ray diffraction and X-ray photoelectron spectroscopy,respectively.The anticorrosive properties were investigated by potentiodynamic polarization curves and neutral salt spray test.The pores in the Al coatings of columnar crystals(Al) induced by the evaporation technique,were apparently filled in the following ball milling process,leading to the densification of Al coatings and the evident improvement of the anticorrosive performances.When treated with ball milling for 30 min,the sample achieves the best anticorrosive performances with the self-corrosion potential of-0.87 V,self-corrosion current density of 1.65 μA/cm~2 and the neutral salt spray(NSS) time of 144 h(red rust).The improvement of the anticorro sive performances of vacuum evaporated Al coating mainly lies in the densification effect of the coating,which depends on different loading conditions of ball milling process.  相似文献   
8.
《Ceramics International》2022,48(7):9362-9370
Ultrafine-grained O′-Sialon-based ceramics were prepared by two-stage sintering at 1250 °C, with large particle GH4169 superalloy powder and nano Al2O3–Y2O3 as composite sintering aids. The effects of these aids on the densification, microstructure, and mechanical properties of O′-Sialon-based ceramics during two-stage sintering were also studied. Studies have shown that the densification process of O′-Sialon-based ceramics promoted by composite sintering additives, presents with the characteristics of two-stage liquid-phase sintering. In the first stage, GH4169 formed ultrafine-grained sintered clusters in the sintered material through liquid phase diffusion. In the second stage, the uniformly dispersed nano Al2O3–Y2O3 realized the uniform sintering of the material. In the fracture process, the ultrafine-grained sintered clusters hindered the crack propagation and promoted multiple deflections of the crack around the edge of the clusters, achieving the effect of crack deflection toughening. This effect, dominated by ultrafine-grained sintered clusters, significantly improved the fracture toughness of O′-Sialon-based ceramics up to 8.52 MPa m1/2.  相似文献   
9.
传统的喷射环流反应器应用于工业上的多相反应时一般采用外部分离,导致流程繁琐、能耗加大、甚至存在安全问题,本文在喷射环流反应器内设计了过滤式导流筒,以实现在反应器内进行多相反应和液固分离操作的连续化。用阶跃示踪法测定液相停留时间分布,考察了表观气速、过滤压力对该反应器混合特性的影响。结果显示:返混程度随表观气速的增大而增大;过滤压力增大,平均停留时间减小,返混程度增大,但过滤压力对返混的影响较弱。  相似文献   
10.
Abstract

Reaction sintered SiC ceramics were prepared by the silicon melt infiltration method over temperatures of 1450?1550°C. The effects of the carbon and silicon contents of the starting materials as well as the sintering temperature and time on the thermal conductivities and microstructures of the ceramic materials were studied. The thermal conductivities and microstructures of the samples were characterised using thermal conductivity measurements, X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy and mercury injection porosimetry. The results showed that sintering temperature and time as well as the carbon and silicon contents of the green specimens are the main factors affecting the microstructure and porosity of reaction bonded SiC ceramics. Increasing the reaction temperature and time decreased the porosity of the ceramics. This was due to the infiltration of the silicon melt into the ceramic specimens. The thermal conductivity and porosity of the sample sintered at 1550°C for 3 h in an argon atmosphere were 102·5 W m K?1 and 0·3% respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号