首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48764篇
  免费   5667篇
  国内免费   2683篇
电工技术   4280篇
综合类   3603篇
化学工业   11835篇
金属工艺   4024篇
机械仪表   2123篇
建筑科学   5036篇
矿业工程   874篇
能源动力   4112篇
轻工业   2136篇
水利工程   842篇
石油天然气   1970篇
武器工业   802篇
无线电   3964篇
一般工业技术   7253篇
冶金工业   1724篇
原子能技术   805篇
自动化技术   1731篇
  2024年   112篇
  2023年   942篇
  2022年   1390篇
  2021年   1846篇
  2020年   1980篇
  2019年   1655篇
  2018年   1509篇
  2017年   1916篇
  2016年   1847篇
  2015年   1913篇
  2014年   2804篇
  2013年   3278篇
  2012年   3451篇
  2011年   3567篇
  2010年   2693篇
  2009年   2779篇
  2008年   2416篇
  2007年   3106篇
  2006年   2965篇
  2005年   2331篇
  2004年   2048篇
  2003年   1669篇
  2002年   1504篇
  2001年   1287篇
  2000年   985篇
  1999年   760篇
  1998年   667篇
  1997年   615篇
  1996年   525篇
  1995年   426篇
  1994年   338篇
  1993年   280篇
  1992年   271篇
  1991年   249篇
  1990年   206篇
  1989年   165篇
  1988年   126篇
  1987年   77篇
  1986年   68篇
  1985年   76篇
  1984年   73篇
  1983年   53篇
  1982年   53篇
  1981年   29篇
  1980年   18篇
  1979年   9篇
  1975年   4篇
  1973年   3篇
  1959年   7篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
1.
Thermal action in extraction process had effects on characteristic tryptic peptides identification and gelling properties of porcine gelatin. SDS-PAGE, HPLC-LTQ/Orbitrap high-resolution mass spectrometry, texture analyser and rheometer were used to evaluate collagen depolymerisation degree, characteristic tryptic peptides and gelling properties of gelatins prepared in various thermal actions. Results showed that with increasing temperature and time, depolymerisation degree enlarged, while gel strength, gelling and melting temperature decreased. Mass spectra showed that 47 and 49 common characteristic tryptic peptides were identified in gelatins extracted at 50 °C and 100 °C with various times, respectively. Moreover, 34 common characteristic tryptic peptides were identified in all gelatin samples. Further comparison between this work and our previous investigations yielded 20 common characteristic tryptic peptides, which stably exist in various thermal actions. These common characteristic tryptic peptides may be very helpful for the accurate authentication of porcine gelatin.  相似文献   
2.
In the present paper, therapeutic treatment of infected tumorous cells has been studied through mathematical modeling and simulation of heat transfer in tissues by using a nonlinear dual-phase lag bioheat transfer model with Dirichlet boundary condition. The components of volumetric heat source in this model such as blood perfusion and metabolism are assumed experimentally validated temperature-dependent function, which gives more accurate temperature distribution in tissues through this model. We have used the finite difference and RK (4, 5) techniques of numerical methods to solve the proposed problem and obtained the exact solution in a particular case. After comparison, we got a good agreement between them. We have used dimensionless quantities throughout this paper. The effect of relaxation and thermalization time with respect to dimensionless temperature distribution has been analyzed in the treatment process.  相似文献   
3.
《Ceramics International》2022,48(20):29862-29872
Thermal shock parameters (R, R''', R'''' and Rst) of MgAlON–MgO composites obtained with additions of spent MgO–C brick were calculated using measured mechanical properties and thermal expansion coefficient, determining their resistance to fracture initiation and crack propagation. The cyclic thermal shock experiments of MgAlON–MgO composites performed from 1398 K to ambient temperature indicate that as number of thermal shock cycle increases, retained strength ratio of MgAlON and MgAlON–4.2 wt%MgO sharply decrease and then keep constant, while that of MgAlON–10.5 wt%MgO and MgAlON–15.7 wt%MgO slowly decrease. The reason for the difference is that MgAlON and MgAlON–4.2 wt%MgO show low value of R''' and R'''', and high value of R and Rst. Moreover, precipitation of impurity containing Fe may play a positive role in improvement of thermal shock resistance of MgAlON–MgO composites. MgAlON?4.2 wt%MgO has the maximum retained strength (55 MPa) even after 5 thermal shock cycles, which is expected to be used in the metallurgical industry.  相似文献   
4.
Low-thermal conductivity ceramics play an indispensable role in maximizing the efficiency and durability of hot end components. Pyrochlore, particularly zirconate pyrochlore, is currently a highly promising and widely studied candidate for its extremely low thermal conductivity. However, there are still few pyrochlores that offer both stiffness, insulation, and good thermal expansion properties. In this work, the solidification method was innovatively introduced into the preparation of titanate pyrochlore, and combined it with the compositional design of high-entropy. Through careful composition design and solidification control, the high-density and uniform elements distributed high-entropy titanate pyrochlore ceramics were successfully prepared. These samples possess high hardness (15.88 GPa) and Young’s modulus (295.5 GPa), low thermal conductivity (0.947 W·m?1·K?1), excellent thermal expansion coefficient (11.6 ×10?6/K) and an exquisite balance between stiffness and insulation (E/κ, 312.1 GPa·W?1·m·K), in which the E/κ exhibits the highest value among the current reported works.  相似文献   
5.
Numerical simulations are performed to investigate the real gas effects on shock/expansion fan interaction. Initial perfect gas simulations at low enthalpy capture the flow structures efficiently and outcomes are found to have excellent agreement with the analytical calculations. Furthermore, the simulations with the real gas solver for different enthalpies showed that the variation in enthalpy significantly changes the flow structures. It is observed that an increase in enthalpy leads to a decrease and increase in the postshock and postexpansion fan Mach numbers, respectively. Another important observation is the decrement in the peak pressure ratio with an increment in the enthalpy. These effects are noted to be more pronounced for Mars's environment due to the higher dependency of specific heat on temperature.  相似文献   
6.
The heat production and thermal storage characteristics of rapid-preparation amorphous powder activated coke (RAC) were investigated. RAC was prepared by using a drop-tube reactor system. The natural oxidation characteristics of RAC were studied through combined TG–FTIR analysis and temperature-programmed experiment. Experimental results showed that CO and CO2 were the main oxidation products of RAC in air, and that the oxidation reaction was in accordance with the Arrhenius equation and law of mass action. Thermal storage characteristics were studied through computational fluid dynamics simulation. The maximum excess temperature θmax increases linearly with the increase of the initial temperature. The concentration fields of the products show that CO2 is mainly concentrated in the upper part of the coke bin, and the CO generated by CO2 at high temperature is mainly concentrated in the central part of the coke bin.  相似文献   
7.
针对煤炭开采过程中出现的突水事故,采用RFPA数值模拟软件建立采动模型,对底板裂隙破断过程和声发射进行模拟,研究煤层底板采动裂隙扩展突水通道,结果表明:离断层越近,断层内水压导升高度越高,断层出现活化,裂隙扩展发育,最终贯通形成导水通道,在进行注浆改造后,单个钻孔的最大涌水量为8 m3/h,说明注浆加固防治水效果较好,能确保工作面的安全回采。  相似文献   
8.
The computational fluid dynamics (CFD) and kinetic-based moment methods coupled approach is adopted to simulate the bulk copolymerization of styrene–acrylonitrile (SAN) in a stirred tank reactor. Numerical simulations are carried out to investigate the impacts of impeller speed, monomer ratio, initiator ratio, and initial reaction temperature on the copolymerization process and product properties. Particularly, the Chaos theory is selected as a criterion for evaluating the occurrence of the thermal runaway. The Flory's and Stockmayer's distributions are employed to calculate chain length distribution and copolymer composition distribution of copolymer. The simulation results highlight that the appearance of thermal runaway can be postponed by properly increasing the rotation speed, decreasing the initiator loadings, initial acrylonitrile contents and initial reactor temperature. Furthermore, significant differences exist in the product properties that predicted by the ideal and non-ideal models, which demonstrates that the temperature heterogeneity plays a crucial role in SAN copolymerization. This study could offer references for the safe operation and design of polymerization processes.  相似文献   
9.
The exploration of the high thermal stability near-infrared (NIR) phosphors is significantly crucial for the development of plant lighting. However, NIR phosphors suffer from the poor chemical and thermal stability, which severely limits their long-term operation. Here, the successful improvement of luminous intensity (149.5%) and thermal stability at 423 K of Zn3Ga2GeO8 (ZGGO): Cr3+ phosphors is achieved for the introduction of Al3+ ions into the host. The release of carriers in deep traps inhibits the emission loss for the thermal disturbance. Furthermore, an NIR light emitting diodes (LEDs) lamp is explored by combining the optimized Zn3Ga1.1675Al0.8GeO8: 0.0325Cr3+ phosphors with a commercial 460 nm blue chip, and the emission band can match well with the absorption bands of photosynthetic pigments and the phytochrome (PR and PFR) of plants. The explored LEDs lamp further determines the growth and the pheromone content of the involved plants for the participation of the NIR emission originated from Cr3+ ions. Our work provides a promising NIR lamp as plant light with improved thermal stability for long-term operation.  相似文献   
10.
《Ceramics International》2022,48(20):29959-29966
High-purity SiC ceramic devices are applied in semiconductor industry owing to their outstanding properties. Nevertheless, it is difficult to densify SiC ceramics without any sintering additive even by HP sintering. In this work, high-purity and dense SiC ceramics were fabricated by HP sintering with very low amounts of sintering aids. Residual B content was only 556 ppm and relative density was more than 99.5%. Furthermore, thermal conductivity of as-prepared SiC ceramics was improved from 155 W m?1 K?1 to 167 W m?1 K?1 by increasing holding time and their plasma corrosion resistance was promoted in the meantime. The as-prepared high-purity SiC ceramics have broad application prospects in the field of semiconductor industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号