首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128256篇
  免费   16233篇
  国内免费   8424篇
电工技术   11792篇
技术理论   3篇
综合类   12765篇
化学工业   19327篇
金属工艺   11202篇
机械仪表   11189篇
建筑科学   10265篇
矿业工程   5904篇
能源动力   9237篇
轻工业   3234篇
水利工程   4292篇
石油天然气   6728篇
武器工业   3875篇
无线电   10542篇
一般工业技术   13902篇
冶金工业   3817篇
原子能技术   2086篇
自动化技术   12753篇
  2024年   298篇
  2023年   2048篇
  2022年   3681篇
  2021年   4378篇
  2020年   4708篇
  2019年   3774篇
  2018年   3723篇
  2017年   4769篇
  2016年   5402篇
  2015年   5791篇
  2014年   8462篇
  2013年   8687篇
  2012年   10229篇
  2011年   10895篇
  2010年   7905篇
  2009年   7988篇
  2008年   7246篇
  2007年   9146篇
  2006年   8070篇
  2005年   6463篇
  2004年   5489篇
  2003年   4311篇
  2002年   3615篇
  2001年   3019篇
  2000年   2337篇
  1999年   1860篇
  1998年   1530篇
  1997年   1270篇
  1996年   1135篇
  1995年   918篇
  1994年   743篇
  1993年   548篇
  1992年   484篇
  1991年   417篇
  1990年   343篇
  1989年   281篇
  1988年   203篇
  1987年   109篇
  1986年   122篇
  1985年   95篇
  1984年   90篇
  1983年   70篇
  1982年   68篇
  1981年   37篇
  1980年   34篇
  1979年   23篇
  1977年   8篇
  1975年   6篇
  1959年   27篇
  1951年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Thermal action in extraction process had effects on characteristic tryptic peptides identification and gelling properties of porcine gelatin. SDS-PAGE, HPLC-LTQ/Orbitrap high-resolution mass spectrometry, texture analyser and rheometer were used to evaluate collagen depolymerisation degree, characteristic tryptic peptides and gelling properties of gelatins prepared in various thermal actions. Results showed that with increasing temperature and time, depolymerisation degree enlarged, while gel strength, gelling and melting temperature decreased. Mass spectra showed that 47 and 49 common characteristic tryptic peptides were identified in gelatins extracted at 50 °C and 100 °C with various times, respectively. Moreover, 34 common characteristic tryptic peptides were identified in all gelatin samples. Further comparison between this work and our previous investigations yielded 20 common characteristic tryptic peptides, which stably exist in various thermal actions. These common characteristic tryptic peptides may be very helpful for the accurate authentication of porcine gelatin.  相似文献   
2.
In the present paper, therapeutic treatment of infected tumorous cells has been studied through mathematical modeling and simulation of heat transfer in tissues by using a nonlinear dual-phase lag bioheat transfer model with Dirichlet boundary condition. The components of volumetric heat source in this model such as blood perfusion and metabolism are assumed experimentally validated temperature-dependent function, which gives more accurate temperature distribution in tissues through this model. We have used the finite difference and RK (4, 5) techniques of numerical methods to solve the proposed problem and obtained the exact solution in a particular case. After comparison, we got a good agreement between them. We have used dimensionless quantities throughout this paper. The effect of relaxation and thermalization time with respect to dimensionless temperature distribution has been analyzed in the treatment process.  相似文献   
3.
《Ceramics International》2022,48(12):16649-16655
Effective adhesion between AlOx and SiOx is important for protective coatings and high-k films under extreme operating conditions. Here, we study the chemo-mechanical behavior of the AlOx/SiOx interface and its delamination mechanism using all-atom reactive molecular dynamics simulations. The structure of the interface is examined by the formation of bridge oxygen and the distribution of nanopores. The cleavage of ionic bonds during delamination and the resulting adhesion strength of the system are quantified using pull-out simulations. The results reveal the dependence of the nanopores and ionic bond formation on the oxide structure. The ionic bond density at the interface increases as the oxidation of the aluminum surface proceeds, which directly increases the adhesion strength with SiOx. In particular, the global coordination distribution in the homogeneously grown oxide inhibits the formation of nanopores inside the aluminum substrate and contributes to extremely high adhesion strength. This reveals a fundamental relationship between physicochemical parameters and engineering mechanics for hetero-oxide structure design.  相似文献   
4.
《Ceramics International》2022,48(20):29862-29872
Thermal shock parameters (R, R''', R'''' and Rst) of MgAlON–MgO composites obtained with additions of spent MgO–C brick were calculated using measured mechanical properties and thermal expansion coefficient, determining their resistance to fracture initiation and crack propagation. The cyclic thermal shock experiments of MgAlON–MgO composites performed from 1398 K to ambient temperature indicate that as number of thermal shock cycle increases, retained strength ratio of MgAlON and MgAlON–4.2 wt%MgO sharply decrease and then keep constant, while that of MgAlON–10.5 wt%MgO and MgAlON–15.7 wt%MgO slowly decrease. The reason for the difference is that MgAlON and MgAlON–4.2 wt%MgO show low value of R''' and R'''', and high value of R and Rst. Moreover, precipitation of impurity containing Fe may play a positive role in improvement of thermal shock resistance of MgAlON–MgO composites. MgAlON?4.2 wt%MgO has the maximum retained strength (55 MPa) even after 5 thermal shock cycles, which is expected to be used in the metallurgical industry.  相似文献   
5.
The coupling of reaction and diffusion between neighboring active sites in the catalyst pore leads to the spatiotemporal fluctuation in component concentration, which is very important to catalyst performance and hence its optimal design. Molecular dynamics simulation with hard-sphere and pseudo-particle modeling has previously revealed the non-stochastic concentration fluctuation of the reactant/product near isolated active site due to such coupling, using a simple model reaction of A → B in 2D pores. The topic is further developed in this work by studying the concentration fluctuation due to such coupling between neighboring active sites in 3D pores. Two 3D pore models containing an isolated active site and two adjacent active sites were constructed, respectively. For the isolated site, the concentration fluctuation intensifies for larger pores, but the product yield decreases, and for a given pore size, the product yield reaches a peak at a certain reactant concentration. For two neighboring sites, their distance (d) is found to have little effect on the reaction, but significant to the diffusion. For the same reaction competing at both sites, larger d leads to more efficient diffusion and better overall performance. However, for sequential reactions at the two sites, higher overall performance presents at a smaller d. The results should be helpful to the catalyst design and reaction control in the relevant processes.  相似文献   
6.
Aiming at improving the relatively low energy output and energy conversion efficiency of the micro-thermal voltaic (MTPV) system, an innovative heat recirculating micro combustor with pin fins is designed. The effects of pin fins arrangement, hydrogen/air equivalent ratio on the energy output and performance of CHMC, HMCP and HMCI are compared and investigated. The result shows that when the Vin is 6 m/s and Φ is 1.0, the emitter power of CHMC is 72.76W, and that of HCMP and HCMI micro combustor are 75.99W and 76.35W. and the emitter efficiency of CHMC, HCMP and HCMI is 41.93%, 43.26% and 44.01%. HMCI has better energy output capability compared with CHMC and HMCP. Even though, HMCI brings a higher pressure drop, it is within the acceptable range. When the Vin is 6 m/s, the pressure drop from the pin fins only accounts for 26.4% of the total pressure drop for HMCI. Through the study of equivalent ratio, it is found that HMCI has good adaptability in different equivalent ratio range. This work provides new ideas for the development of MTPV system in the future.  相似文献   
7.
Hydrogen produced from renewable resources is one of the cleanest fuels and could be used to store intermittent solar, wind and other energies. The main concern about using hydrogen is its hazards, such as high storage pressure, wide-range flammability, low mass density, and high diffusion. This study investigated the hazards of compressed hydrogen storage by developing a CFD model to understand the gas dispersion behaviour. The model was validated using the past experimental data and showed a good agreement, which could demonstrate the diffusion characteristics and gas stratification of a buoyant gas. A case study of an accidental release of compressed hydrogen from a storage tank was investigated to evaluate the risk of a hydrogen plant. A mathematical model of the jet spill was used to account for the choking effect from a high-pressure release to ensure the input velocity in CFD simulation is suitable for modelling gas dispersion using verified spatial and temporal scales, then the simulation results were used as inputs of vapour cloud explosions (VCEs) to investigate the potential overpressure effect. It was found the CFD model could predict a more reasonable flammable gas amount in cloud than using the bulk hydrogen release rate. The safety distance based on the overpressure prediction was reduced by 35%. The method proposed in this study can provide more validity for the consequence analysis as part of risk assessment.  相似文献   
8.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
9.
为了研究地应力对凿岩爆破的影响,采用DDA方法模拟爆炸应力波作用下考虑地应力条件时的单孔和多孔凿岩爆破破岩过程。模拟发现,随着初始地应力水平的增加,裂纹扩展半径和破岩区域面积减小,裂纹发育主方向趋于地应力的最大主应力方向,初始地应力对裂纹的抑制和引导作用明显;初始地应力水平的增加,对拉伸裂纹的抑制作用更为显著,从而降低了拉伸破坏对爆破破岩的贡献。模拟也表明,在初始地应力存在的条件下,通过对爆破载荷和炮孔布置进行针对性的优化,可以克服地应力带来的影响,并取得预期的爆破效果。本研究对地应力条件下的凿岩爆破工程具有理论和参考意义。  相似文献   
10.
为了更加真实、直观地呈现智能变电站的运行整体结构,构建基于VR技术的智能变电站运行仿真培训系统。该系统通过5个模块协同完成智能变电站运行仿真培训,结合实际变电站的设备情况,采用二维纹理映射方法完成变电站设备仿真建模;系统利用虚拟现实交互模块呈现培训场景,参与培训人员能够通过人机交互设备,实现场景漫游和相关培训内容操作。测试结果表明:该系统能够较好地模拟出智能变电站的实际运行情况,参与培训的人员可以身临其境地完成整个变电站的巡视,更真实、直观地呈现智能变电站的整体状态。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号