首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   15篇
  机械仪表   17篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
排序方式: 共有17条查询结果,搜索用时 46 毫秒
1.
针对孔隙率接近0的小孔隙率碳纤维复合材料(Carbon Fiber Reinforced Composite,CFRP)的富树脂检测需求,提出富树脂超声检测技术。对超声检测信号中的噪声消除方法、衰减抑制方法和富树脂检测的多视图成像技术进行研究,并开发小孔隙率CFRP富树脂超声检测软件。首先提出共振频率估计方法,通过低通滤波抑制高频随机噪声。其次根据频率差异,应用变分模态分解算法分离并消除共振结构噪声,提取低频成分。该低频成分包括表面回波、底面回波、富树脂反射信号和由层间反射信号、材料散射噪声等构成的相干噪声。再次,引入瞬时幅值比修正低频成分的幅值衰减并描述被检测小孔隙率CFRP的局部反射能力。最后,应用Otsu多阈值方法自适应获得富树脂识别的阈值,消除相干噪声的影响,完成富树脂识别。进一步对小孔隙率CFRP的超声检测结果进行多视图成像,在三维视图、C扫描视图和B扫描视图内识别富树脂。结果表明:变分模态分解的分量数为2,Otsu多阈值的类别数为3时,能够准确识别小孔隙率CFRP超声检测信号中的富树脂反射信号;采用0.15作为多视图成像的阈值,可简洁有效地描述富树脂在小孔隙率CFRP中的分布。  相似文献
2.
针对双激光位移传感器测量大型壳段厚度过程中噪声对检测精度的影响,提出利用变分模态分解来实现对厚度信号的自适应去噪,利用相邻固有模态函数之间的离散Hellinger距离来获取最佳的模态数。该方法将变分模态分解算法引入到激光信号的自适应滤波过程中,分析并改进了变分模态分解算法的过分解、欠分解以及能量泄露的问题。然后,对改进的变分模态分解与希伯特振动分解和自适应噪声总体集合经验模态分解进行性能对比,提出了固有模态函数的相对瞬时能量概率的概念。最后,结合离散Hellinger概率分布距离理论判断固有模态之间的信噪分界点,实现了对信号的重构及滤波处理。仿真和实验结果表明,该方法对壳段厚度信号处理的信噪比为39.27 dB,比自适应噪声总体集合经验模态分解方法提高了10 dB,具有良好的自适应性,无需先验条件便能快速有效地识别并分离激光信号中的噪声成分。  相似文献
3.
针对条纹投影三维形貌测量涉及的相位提取,提出了一种基于变分模态分解的单幅条纹投影相位提取方法。通过建立变分模态分解模型和极小化变分模态分解将单幅投影条纹图分解成背景部分、条纹部分和噪声部分。然后对得到条纹部分进行Hilbert变换和反正切变换得到包裹相位;对其进行质量导向相位解包裹和Zernike多项式去载频得到解包裹相位。将该方法与Fourier变换、连续小波变换进行了对比,结果显示:本文提出的相位提取方法相位误差为3.14×10-4,小于Fourier变换和连续小波变换方法对应的误差3.30×10-4和6.52×10-4。模拟和实验结果表明:本文提出的方法在处理具有边缘信息投影条纹图时具有优势,能够提取出更准确的相位信息,可有效地用于含边缘不连续和突起的三维物体测量。  相似文献
4.
针对低转速齿轮箱齿轮故障特征频率低、故障特征频率易被背景噪声淹没,使其难以准确提取的问题,提出了基于参数优化的变分模态分解(parameter optimization variational mode decomposition, 简称POVMD)和循环自相关函数(cyclic autocorrelation function, 简称CAF)结合的故障诊断方法。首先,通过POVMD对原始信号进行分解,选用余弦相似度度量选取敏感的本征模态函数(intrinsic mode function, 简称IMF);其次,计算其循环自相关函数谱,获得包含调制特征的循环自相关函数谱切片;最后,使用Teager能量算子(Teager energyoperator, 简称TEO)算法对切片解调,提取故障特征频率。同时将本方法与相关方法进行了对比分析,特征频率提取效果更加显著,仿真信号和实验数据分析验证了该方法的有效性和可靠性。  相似文献
5.
为了准确分离识别内燃机的主要噪声源,提出了一种改进变分模态分解融合鲁棒独立分量分析的方法。首先,针对变分模态分解方法的分解数选择问题进行了算法优化,提出了基于重构信号能量比和中心频率的改进变分模态分解方法,并利用仿真信号进行了验证;其次,进行了内燃机噪声试验,利用改进变分模态分解将单通道信号分解成多个信号分量,根据信号分量与源信号的互信息主要分量识别,克服了主要噪声分量选择客观依据不足的问题;最后,通过鲁棒独立分量分析提取主要噪声分量的独立成分,并结合相干分析和时频分析进行噪声源识别。结果显示,所提出的方法能够有效进行噪声源分离,可成功识别出燃烧噪声、活塞敲击噪声和空压机噪声等内燃机主要噪声源。  相似文献
6.
针对风机滚动轴承微弱故障信号所具有的非线性和非平稳特征及易被强背景噪声掩盖的特点,提出了一种变分模态分解(variational modal decomposition, 简称VMD)和最大相关峭度解卷积(maximum correlated kurtosis deconvolution, 简称MCKD)相结合的滚动轴承微弱故障诊断方法。为实现VMD和MCKD的参数自适应选择,采用粒子群优化算法(particle swarm optimization, 简称PSO),对两种算法中的参数进行优化。首先,利用PSO优化VMD算法中的α和K,再基于VMD对微弱故障信号分解后的结果,选取最优模态分量;其次,利用PSO优化MCKD算法中的L和T,再基于MCKD算法加强最优分量信号中的故障冲击成分;最后,通过包络谱提取出轴承微弱故障特征。仿真和试验均表明,此方法能够自适应增强轴承微弱故障中的冲击成分,有效提取出被强噪声淹没的轴承微弱故障特征。  相似文献
7.
采用改进的变分模态分解(improved variational mode decomposition,简称IVMD)与支持向量机(support vector machine,简称SVM)相联合的方法,对泵站管道的振动响应趋势进行预测。首先,基于互信息准则确定IVMD的分解模态数,克服变分模态分解(variatronal mode decomposition,简称VMD)盲目选取分解参数的缺点,利用IVMD将机组和管道的振动序列分解为多个固态模量(intrinsic mode function,简称IMF),分别作为SVM模型的输入和输出;其次,利用粒子群优化(particle swarm optimization,简称PSO)分别寻找各模态分量对应SVM模型的最优参数并对各分量分别进行预测;最后,将各测点对应的IMFs预测结果重构作为最终的预测值。结合某大型泵站2号压力管道振动响应数据,分别采用IVMD-SVM,PSO-SVM和BP神经网络3种模型对管道振动响应趋势进行预测,并将预测结果进行对比分析。结果表明,IVMD-SVM模型得到的预测结果和实测值更加接近,计算精度更高,且误差较小,该方法对管道及类似工程结构的振动趋势预测具有一定的参考价值。  相似文献
8.
针对变分模态分解(variational mode decomposition,简称VMD)参数选择对结构模态特征识别的影响,应用VMD和Teager能量算子(Teager energy operator,简称TEO)提出了一种新的结构系统辨识方法,根据VMD层数参量K的变化寻找稳定的极点,用于识别结构模态特性。为了满足TEO对单分量的要求,采用VMD方法将振动信号分解成不同尺度的细节信号(band-limited intrinsic mode function,简称BIMF)。对BIMF使用TEO法估计固有频率与阻尼比,使用层数参量K时形成的稳态极点判断真实结构模态系统参数,去除虚假分量。进行了数值和实验验证,并与传统方法进行比较,结果表明,所提出的方法在传统模态分析与环境激励的模态分析均为有效、准确且可行的。  相似文献
9.
为从含有较强噪声的缸盖振动信号中提取有效的故障特征并进行故障分类,提出了采用独立变分模态分解(independent variational mode decomposition,简称IVMD)与改进核极限学习机(improved kernel extreme learning machine,简称IKELM)的发动机故障诊断方法。首先,根据频谱循环相干系数选取匹配波形对信号进行端点延拓,并利用变分模态分解(variational mode decomposition,简称VMD)将延拓后信号分解为一系列固有模态分量,有效抑制了VMD中的端点效应;其次,选取有效分量作为输入观测信号,进行核独立成分分析,进一步分离干扰噪声与有效信号,并消除模态混叠,得到相互独立的有效故障特征频带,进而提取各频带的自回归模型参数、多尺度模糊熵和标准化能量矩构建故障特征向量集;最后,建立基于社会情感优化算法的IKELM分类模型,对故障特征进行分类,实现发动机故障诊断。仿真和实验结果表明,所提出的方法可有效抑制VMD的端点效应,提高信号分解精度,消除噪声干扰并分离出相互独立的有效故障特征频带,增强特征参数辨识度,最终提高发动机故障诊断速度与精度,发动机故障诊断平均准确率达到99.85%。  相似文献
10.
针对双树复小波变换存在频率混叠以及参数需自定义的缺陷,提出自适应改进双树复小波变换的齿轮箱故障诊断方法。首先,利用双树复小波变换将信号进行分解和单支重构,采用粒子群算法将分解后分量峭度值作为适应度函数,选择双树复小波的最优分解层数;其次,对重构出的低频信号进行频谱分析提取故障特征,将单支重构后的各高频分量进行变分模态分解,通过峭度值获得各高频分量经变分模态分解后的主频率分量信号;最后,分析各主频率分量信号的频谱,识别齿轮箱的故障特征。结果表明,该方法与双树复小波变换和变分模态分解相比,不仅消除了频率混叠现象,提高了信噪比和频带选择的正确性,而且还提高了从强噪声环境中提取瞬态冲击特征的能力。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号