首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  完全免费   6篇
  机械仪表   30篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2007年   2篇
  2006年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
基于KPCA和MKL-SVM的非线性过程监控与故障诊断   总被引:6,自引:5,他引:1  
利用核主元分析非线性过程监控的优势,结合多重核学习支持向量机在故障诊断方面的准确性,提出了基于核主元分析和多重核学习支持向量机的非线性过程监控与故障诊断方法.该方法运用核主元法对数据进行处理,在特征空间构建T2和SPE来检测故障的发生,若有故障发生,则计算样本的非线性主元得分向量,将其作为MKL-SVM的输入值,通过MKL-SVM的分类进行故障类型识别.将上述方法应用到Tennessee Eastman(TE)化工过程,多种故障模式的仿真结果表明该方法不但能有效地辨识故障,而且提高了故障检测和故障诊断的速度.  相似文献
2.
基于KPCA的SBR过程监视   总被引:4,自引:0,他引:4  
序批式反应器生化污水处理系统(SBR)具有复杂的生化反应机理,其固有的严重非线性、持续时间有限、非稳态运行等给其过程监视带来特殊困难。核主元分析(KPCA)方法通过集成算子与非线性核函数计算高维特性空间的主元成分,有效捕捉过程变量中的非线性关系。将KPCA技巧应用到序批式反应器生化污水处理系统,建立了基于KPCA的SBR污水处理过程在线监视策略。在监视暴风雨事件等典型的SBR过程异常状态时,统计指标变化灵敏,诊断及时。与线性PCA相比,显示出更高的过程监视性能。  相似文献
3.
针对化工过程数据的多尺度性和非线性特性,提出了改进多尺度核主元分析法.先利用小波变换分析测量数据的多尺度特性,然后采用核主元分析算法进行在线故障检测,对检测到的故障采用核函数梯度算法实现在线故障诊断,根据每个监控变量对统计量T~2和SPE的贡献程度,绘制贡献图,用于故障的分离.在监控过程中为解决核矩阵计算困难,引入特征向量选择方法.TE过程的仿真结果表明它能有效实现故障检测、故障诊断,与主元分析方法相比,显示出更高的过程监控能力.  相似文献
4.
核主元分析中核函数参数选优方法研究   总被引:2,自引:1,他引:1  
提出一种基于矩阵相似度的核函数参数选优方法.首先给出一种具有较好分类能力的核函数矩阵。然后.利用矩阵间的相似度量关系,在一定范围内寻找能近似此矩阵的核函数参数值。将该方法应用于直升机齿轮箱齿轮故障特征提取中,结果显示经过核函数参数选优的KPCA取得了较好的识别效果。  相似文献
5.
结构动力学模型确认问题的核密度估计方法   总被引:2,自引:0,他引:2  
将核密度估计方法成功用于解决结构动力学模型确认的挑战问题,进一步明确模型确认在结构动力学中的实施过程。在美国圣地亚国家实验室提出的结构动力学模型确认挑战问题中,由于子结构与整体结构的弱非线性连接以及子结构个体差异引起的统计特性并不满足标准的概率分布,因此采用核密度估计方法建立子结构的概率模型,并使用核主元分析进行降维处理来提高核密度估计的计算效率;在子结构概率模型的基础上,使用校准试验数据对模型的准确度进行定性验证,同时使用确认试验数据对模型的精度进行定量评估;最后把确认过的子结构模型用于整体认证结构的评估以及最后目标模型的预测中,得到了与其他研究者相一致的结果。研究表明核密度估计方法是一种解决结构动力学模型确认问题的有效方法。  相似文献
6.
指数加权动态核主元分析法及其在故障诊断中应用   总被引:2,自引:1,他引:1  
核主元分析法能充分利用核函数来解决非线性问题,具有很好的非线性逼近能力,但传统的核主元分析不能处理动态问题。在分析核主元分析法的基础上,提出一种新的指数加权核主元分析算法,建立一个多变量加权自回归统计核主元模型,选择Q统计量来判断系统是否发生故障,给出指数加权核主元分析法诊断故障的具体计算步骤。对液压泵进行了试验,利用小波包对液压泵端盖的振动信号进行处理,提取由13个时域和时频域特征量构成的故障特征矢量。试验结果表明,与传统的核主元分析法相比,新方法能实时更新主元模型和控制限Qa,合理地利用实时动态信息,能较好地处理动态问题,通过计算比较选择合适的加权因子,能获得良好的故障诊断效果,该方法是可行而有效的。  相似文献
7.
采用多层核学习机的柴油机气门机构故障诊断   总被引:2,自引:1,他引:1  
针对柴油机缸盖振动信号的非平稳性以及多种气门故障的线性不可分问题,提出了一种组合核主元分析和支持向量机的多层核学习机方法。该方法使用核主元分析技术从原始特征中提取非线性主元,将其输入到由"一对多"算法构建的支持向量机多分类器中,实现了多种气门故障的定量诊断。试验结果表明,在小样本条件下,该方法能准确识别气门机构的6种状态,且识别精度及测试速度均优于单独使用多类支持向量机方法。  相似文献
8.
基于KPCA—SVM的柴油机状态识别方法的研究   总被引:1,自引:1,他引:0  
为了有效地对柴油机的运行状态进行状态识别,根据柴油机的特征信息和识别的特点,研究了基于核主元分析(KPCA)和支持向量机(SVM)进行柴油机状态识别的故障诊断方法.首先,对柴油机进行特征提取,构成一个特征向量.然后对其进行核主元分析,计算得到能反映设备状态的特征向量,有效去除信息的冗余.最后,将得到的特征向量进行支持向量机的训练学习,识别柴油机的状态.通过实验室柴油机燃烧系统不同运行状态下的识别分析,验证了此方法的可行性和实用性.  相似文献
9.
基于粒子群优化的核主元分析特征的提取技术   总被引:1,自引:1,他引:0  
针对核主元分析在参数设置上的盲目性,提出应用粒子群优化算法优化核函数参数.并将核主元分析应用于特征提取中.首先建立核函数参数优化的数学模型,然后应用加速度自适应粒子群优化算法对其寻优,并通过Iris数据集进行仿真研究,验证其提取特征的有效性.将优化的核主元分析方法应用于齿轮箱典型故障的特征提取中,结果表明:参数优化的核主元分析能有效降低齿轮箱特征向量的维数,较线性主元分析取得更好的故障识别效果.该方法在机械故障信号的非线性特征提取中具有优势.  相似文献
10.
基于KPCA-LSSVM的硅锰合金熔炼过程炉渣碱度预测研究   总被引:1,自引:0,他引:1  
针对硅锰合金熔炼过程中炉渣碱度在线检测困难、离线化验滞后大,难以实现实时控制的问题,提出了一种基于核主元分析(KPCA)与最小二乘支持向量机(LSSVM)相结合的预测方法.该方法通过KPCA去除样本数据的噪声,提取输入数据空间中的非线性主元,然后利用LSSVM回归算法建立硅锰合金熔炼炉炉渣碱度预测模型,工业生产过程数据仿真结果表明,与SVM或LSSVM建模方法相比,KPCA-LSSVM预测模型的测量精度高、跟踪性能好,能满足炉渣碱度的在线测量要求.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号