首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  国内免费   6篇
  完全免费   13篇
  机械仪表   141篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   9篇
  2013年   8篇
  2012年   17篇
  2011年   14篇
  2010年   11篇
  2009年   12篇
  2008年   15篇
  2007年   18篇
  2006年   16篇
  2005年   4篇
  2004年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
1.
一种动态改变惯性权重的粒子群优化算法   总被引:34,自引:2,他引:32  
针对粒子群优化算法的局限性,提出了一种动态改变惯性权重的粒子群算法,在优化迭代过程中,惯性权重值随粒子的位置和目标函数的性质而变化。函数测试表明,改进后的算法使收敛速度显著加快,而且不易陷入局部极值点。  相似文献
2.
基于改进粒子群算法的生产批量计划问题研究   总被引:12,自引:0,他引:12  
为求解基于成组单元有能力约束的生产批量计划问题,提出了一种基于二进制粒子群算法和免疫记忆机制相结合的方法,并阐明了该方法的具体实现过程。在该方法中,采用罚函数法处理约束条件,每个粒子都代表一组可用于描述具体批量计划方案的规则组合。通过对其他文献中一个仿真实例的计算和结果比较,表明该算法在寻优能力、求解速度和稳定性等方面都明显优于文献中的遗传算法。  相似文献
3.
粒子群优化算法及其在圆柱度误差评定中的应用   总被引:11,自引:8,他引:3  
提出了将粒子群优化算法用于圆柱度误差评定的设想。对算法的基本原理和实现步骤做了具体阐述,给出了圆柱度误差评定的基本问题,及其优化目标函数及算法的适应度函数和编码方式,对算法进行了可行性和准确性验算。计算结果表明,该方法对于圆柱度误差评定这类具有复杂目标函数和较多参数的非线性优化问题有很好的计算性能,优于最小二乘法;与遗传算法和其它满足最小区域条件计算方法相比,计算精度略优于前者或者与前者相当,能够获得精度较高的结果,而突出优点是简单,易于实现而且计算效率较高。  相似文献
4.
改进粒子群优化算法在工程优化问题中的应用研究   总被引:10,自引:1,他引:9  
粒子群优化(PSO)算法是一种群集智能方法,它通过粒子之间的合作与竞争以实现对多维复杂空间的高效搜索。在对于粒子群群体构造和粒子多样性对收敛速度和精度影响的研究基础上提出了一种改进型粒子群优化算法。针对工程中的有约束的优化问题,将改进粒子群算法与函数法相结合进行求解。计算实例表明改进型粒子群优化算法大大改善了传统PSO算法的全局收敛性能,解的精度提高了很多。  相似文献
5.
粒子群优化算法及其在结构优化设计中的应用   总被引:8,自引:0,他引:8  
介绍了粒子群优化算法的原理和实现方法,分析了该算法的主要参数对搜索方向的影响。将粒子群优化算 法与遗传算法在优化过程和搜索技术方面进行了对比。利用粒子群优化算法与遗传算法分别对测试函数和桁架结 构优化设计问题进行求解,将两种算法的计算结果进行了对比。计算结果表明在满足相同的计算精度的前提下,粒 子群优化算法的效率更高,利用粒子群优化算法可求解机翼结构优化设计问题,因此,粒子群算法是一种有效的优 化方法,适用于大型复杂结构优化设计。  相似文献
6.
一种确定神经网络初始权值的新方法   总被引:6,自引:0,他引:6  
针对BP神经网络对易陷入局部极小的缺点,结合粒子群优化算法(PSO)在全局搜索上的良好性能,提出了一种新的算法--PSO-BP混合算法.该算法先用PSO算法将BP网络的初始权值优化到全局极小点附近,然后用传统BP神经网络学习算法进行进一步优化,仿真表明:该方法很好地解决了BP神经网络对初始值敏感、易局部收敛的问题.  相似文献
7.
市场环境的变化导致产品更新换代加快,产品种类预测成为新的难题。传统的线性预测方法只能对产品需求的数量或价格等数值进行预测,而无法对产品的发展趋势和未来种类做出正确预测。通过对产品种类预测、数据挖掘和粒子群优化算法的研究,建立种类预测模型,利用基于粒子群优化的神经网络训练算法进行产品种类预测,并以手机为例进行预测,结果证明该方法是有效的。  相似文献
8.
半导体炉管区批调度问题的粒子群优化算法研究   总被引:5,自引:0,他引:5  
为改善粒子群算法对大规模问题求解的性能,提出了一种基于文化进化的并行粒子群算法,详细阐述了该算法的原理和具体实施方案.针对半导体炉管区批调度问题,设计了双层粒子群算法,外层应用基于文化进化的并行粒子群算法进行批量计划问题的求解,内层采用传统的粒子群算法求解调度问题.通过对其他文献中的仿真实例进行计算和结果比较表明,该算法优于文献中的启发式算法和蚂蚁算法.  相似文献
9.
基于拥挤距离排序的多目标粒子群优化算法及其应用   总被引:5,自引:0,他引:5  
针对多目标粒子群算法在全局寻优能力和Pareto集多样性上的不足,提出基于拥挤距离排序的多目标粒子群算法.该算法采用精英策略,基于个体拥挤距离降序排列,进行外部种群的缩减和全局最优值的更新,并在内部粒子群中引入小概率变异机制,增强算法的全局寻优能力,控制Pareto最优解的数目,同时保证其收敛性和多样性特征.在电梯曳引性能的多目标优化应用中,证明了该算法对于两目标和三目标优化问题求解的有效性.不同规模实例的运算对比表明,该算法在Pareto前沿的收敛性和多样性方面均优于改进强度Pareto进化算法,且缩短了运算时间,具有较高的效率与鲁棒性.  相似文献
10.
新的求解钻削路径优化问题算法研究   总被引:4,自引:1,他引:3  
将粒子群优化算法应用到离散空间的群孔钻削路径优化之中。由于基本粒子群算法不能保证全局或局部收敛,在算法数学模型的基础上,引入重新生成停止进化微粒的方式对算法加以改进,使改进的算法具有全局收敛能力。通过建立序交换元和序交换集对算法的操作算子进行改进,满足钻削路径优化问题中整数编码的需要。实验表明,新的算法具有实现简单,收敛速度快,能够实现全局收敛的优点。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号