首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  完全免费   1篇
  机械仪表   24篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
排序方式: 共有24条查询结果,搜索用时 109 毫秒
1.
基于小波包分解的脑电信号特征提取   总被引:8,自引:2,他引:6  
吴婷  颜国正  杨帮华 《仪器仪表学报》2007,28(12):2230-2234
在脑机接口研究中,针对脑电信号的特征抽取,提出一种基于小波包分解的方法,利用Fisher距离准则,选择具有较大可分离性的特定子带小波包系数和能量作为有效特征,构成特征矢量,并采用BCI2003竞赛数据,通过对该特征矢量的可分性和识别精度2个指标的评估,表明了所提出方法的有效性。  相似文献
2.
基于小波包熵和支持向量机的运动想象任务分类研究   总被引:8,自引:4,他引:4  
对运动想象脑电特征进行准确提取和分类是脑-机接口技术研究的重要问题.针对脑电信号非平稳性和非线性特点,提出了一种将小波包熵(WPE)和支持向量机(SVM)相结合的脑电信号识别方法,利用小波包系数能量分布分析脑电时频特性,结合信息熵分析其不确定性和复杂性,并从单次实验中提取运动想象脑电特征;通过支持向量机对特征信号进行分类,采用了一种核函数参数v和误差惩罚因子c的最佳寻优方法,并用互信息(MI)、信噪比(SNR)、最小错分率(MR)等准则对分类器进行评判.测试结果为:想象左右手运动脑电信号识别精度达到90%,MI为0.65 bit,SNR为1.44.结果表明WPE-SVM识别方法能够准确提取脑电本质特征,具有较强的分类性能和抗干扰能力,为大脑运动意识任务分类提供了有效方法,它可以应用于脑-机接口系统中.  相似文献
3.
运动意识任务的模式识别方法研究   总被引:4,自引:3,他引:1  
针对脑机接口研究中运动想象脑电信号的模式识别问题,提出了一种基于离散小波变换和AR双谱的特征提取方法.该方法首先利用Daubechies类小波函数对二路脑电信号进行3层分解,抽取小波系数的均值、能量均值、均方差三个特征;然后,采用5阶AR模型进行双谱估计,抽取双谱切片特征;最后,将这两类特征进行组合后使用马氏距离线性判别进行分类.利用BCI2003竞赛的标准数据,该方法使得EEG的识别正确率达到92.86%,与竞赛的最好结果(89.29%)相比提高了3.57%,为BCI研究中脑电信号的模式识别提供了有效的手段.  相似文献
4.
基于MEG的脑机接口特征提取方法研究   总被引:3,自引:1,他引:2  
脑磁信号作为一种新的脑机接口(BCI)输入信号,含有手运动方向的模式信息.在研究了适用于非平稳性的自适应自回归模型和适用于非高斯性的高阶谱自回归模型的基础上,本文针对脑磁信号的非平稳非高斯性,提出了一种新的特征提取算法,即基于经验模态分解的自回归模型.实验结果表明该算法适合于分析非高斯、非平稳的脑磁信号,结果优于上述的两种算法,并且超过了脑机接口竞赛四优胜者的识别率.  相似文献
5.
基于小波包分解的意识脑电特征提取   总被引:3,自引:1,他引:2  
针对2种不同意识任务(想象左手运动和想象右手运动)的脑-机接口(brain-computer interface,BCI)设计,提出了基于小波包分解的特征提取方法。首先深入研究了小波包变换,结合事件相关去同步化(event-related desynchronization,ERD)/事件相关同步化(event-related synchronization,ERS)现象,提出以小波包分解系数来考虑特征,然后对C3、C4导联脑电信号进行小波包分解系数方差和相对能量2种特征的提取,最后采用最简线性分类器进行分类。结果表明,2种特征对应的最大分类正确率均达到了85%,对应时间分别为4.34 s和4.39 s。因此,在保证分类正确率的前提下,所提方法更加简单和有效,为大脑意识任务分类提供了新思路。  相似文献
6.
脑-机接口研究中想象动作电位的特征提取与分类算法   总被引:3,自引:0,他引:3  
人在想象但未实施肢体或其他身体部位动作时,与该动作相关的大脑运动皮层区域会发生与该动作实施时相似的电生理响应,称为想象动作电位.想象动作电位的提取与分类是脑-机接口(BCI)技术的关键和难点.本文分别介绍了想象动作电位的时频分析、复杂度分析、相位耦合测量、多通道线性描述符、多维统计分析等特征提取方法和线性判别分析、人工神经网络、支持向量机等分类算法,以供BCI系统设计与研究时参考.  相似文献
7.
一种基于DSP的脑机接口硬件系统设计   总被引:2,自引:0,他引:2  
为了实现脑机接口系统的便携性,提高脑机接口信号传输的通信速率,本系统应用高性能信号处理器TMS320VC5402DSP作为核心芯片,设计了一种基于DSP的脑机接口硬件系统。在DSP系统设计中,应用多通道缓冲串口(McBSP)实现了DSP与模数转换器(A/D)的接口设计;扩展了可以实现上电自动加载的FLASH;应用通用串行总线USB接口实现DSP系统与上位机的通信。本文详细介绍了这一种基于DSP芯片的脑机接口系统的硬件组成和工作原理,包括各模块的芯片选择和接口设计,并运用VISIO和PROTEL软件绘制了框图及电路图,为后续的工作打下了基础。  相似文献
8.
单通道视觉诱发脑电的单次提取方法研究   总被引:1,自引:0,他引:1  
针对单通道脑电信号单次提取识别率较低的问题,提出了一种正交B样条小波变换与Fisher线性判别相结合的方法,提高了视觉诱发电位P300的单次提取识别率。首先采用相干平均和小波变换的方法对脑电信号进行预处理,然后根据脑电信号的时-频特性及视觉诱发电位的锁时关系,提取出表征P300的8维小波系数模板,再次利用模板对单次样本进行特征提取,最后根据Fisher线性判别对测试样本进行分类识别,判断单次输入是否为视觉诱发脑电信号。实验结果表明,该方法对单次样本P300的平均识别率为95.10%。  相似文献
9.
P300 Speller中基于AdaBoost SVM的导联筛选研究   总被引:1,自引:0,他引:1  
P300 Speller是目前少数可以用于临床残疾人功能补偿的脑-机接口系统,P300 Speller的字符识别效率与脑电信号采集的头皮表面电极位置密切相关,过多的电极不但增加了使用者的不适感,且易引入噪声干扰进而影响系统的稳定性。采用并发展了一种基于AdaBoost SVM(adaptive boosting support vector machine)的特征筛选方法,对脑电导联进行优化筛选,通过对6位受试者的实验数据处理及分析,结果表明该方法可以在不显著影响识别效率的基础上降低导联数量76%以上。另外,相较于经典的SVM-RFE特征筛选方法,该方法极大降低了计算复杂度,更适用于训练数据庞大的脑电特征优化问题。  相似文献
10.
基于基因优化的脑电信号特征选择   总被引:1,自引:1,他引:0  
针对脑机接口( BCI)研究中脑电信号的特征选择问题,提出了一种基因优化算法(GO).GO算法在变异的基础上实现自下而上、由微观到宏观的自组织优化,可以在提高分类精度的同时很大程度上节省在线数据处理的时间.为检验提出方法的有效性,将其与基于AGA的特征选择方法以及基于Fisher距离的滤波选择方法进行了比较,实验结果表明基于GO的分类精度明显高于其他方法,获得了最好的模式识别性能.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号