首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2269篇
  免费   97篇
  国内免费   98篇
电工技术   17篇
综合类   50篇
化学工业   555篇
金属工艺   216篇
机械仪表   526篇
建筑科学   13篇
矿业工程   11篇
能源动力   41篇
轻工业   99篇
石油天然气   23篇
武器工业   1篇
无线电   283篇
一般工业技术   542篇
冶金工业   8篇
原子能技术   33篇
自动化技术   46篇
  2023年   5篇
  2022年   16篇
  2021年   25篇
  2020年   29篇
  2019年   37篇
  2018年   29篇
  2017年   45篇
  2016年   65篇
  2015年   60篇
  2014年   90篇
  2013年   179篇
  2012年   130篇
  2011年   208篇
  2010年   148篇
  2009年   196篇
  2008年   217篇
  2007年   177篇
  2006年   199篇
  2005年   126篇
  2004年   113篇
  2003年   103篇
  2002年   65篇
  2001年   44篇
  2000年   37篇
  1999年   46篇
  1998年   20篇
  1997年   13篇
  1996年   15篇
  1995年   13篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1988年   2篇
排序方式: 共有2464条查询结果,搜索用时 16 毫秒
1.
A multifractal analysis has been performed on the 3D (three-dimensional) surface microtexture of magnesium-doped zinc oxide (ZnO:Mg) thin films with doping concentration of 0, 2, 4, and 5%. Thin films were deposited onto the glass substrates via the sol–gel spin coating method. The effect of magnesium doping, on the crystal structure, morphology, and band gap for ZnO:Mg thin films has been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV–Vis spectroscopy. It has been observed that the surface of ZnO thin films is multifractal in nature. However, multifractality and complexity observed to decrease with increasing content of Mg in ZnO thin films due to formation of islands on the surface in accordance with Volmer–Weber growth mechanism. The investigations revealed that crystallinity, microtexture, morphology, and optical properties of the thin films can be tuned by controlling the Mg content within the ZnO lattice. In particular, their optical band gap energies were 3.27, 3.31, 3.34, and 3.33 eV at 0, 2, 4, and 5%, respectively. The prepared thin films of ZnO:Mg with tuned characteristics would have promising applications in optoelectronic devices.  相似文献   
2.
本文主要通过原子力显微镜(AFM)和Langmuir单层膜技术研究不同浓度的髓鞘碱性蛋白(MBP)与"脂筏"(PC/SM/Cholesterol)模型相互作用形成仿生膜的物理特性。利用表面压缩模量(Cs-1)和二维维里状态方程对π-A曲线进行分析,计算了MBP与"脂筏"单层膜分子间相互作用的第二维里系数。根据二维维里状态方程分析可得随着亚相中MBP浓度的增加,第二维里系数的值也随之变大,这说明在低的表面压力下,MBP吸附到"脂筏"模型脂膜中,且分子间的相互作用为空间排斥力。压缩模量的值表明,亚相中MBP的浓度越大,MBP与"脂筏"单层膜分子之间的作用力越强,且MBP分子将携带更多的"脂筏"分子进入亚相与其发生疏水相互作用,使得单层膜更加稀疏,可压缩性更大。AFM的表面形貌结果和曲线的分析结果相呼应,表明亚相不同浓度的MBP对"脂筏"单层膜排列和构象有着显著的影响。亚相中不同浓度的MBP与"脂筏"分子间相互作用的热力学研究为维持髓鞘结构和功能的稳定提供了有用的信息和理论基础。  相似文献   
3.
The aggregation of α-synuclein into small soluble aggregates and then fibrils is important in the development and spreading of aggregates through the brain in Parkinson's disease. Fibrillar aggregates can grow by monomer addition and then break into fragments that could spread into neighboring cells. The rate constants for fibril elongation and fragmentation have been measured but it is not known how large an aggregate needs to be before fibril formation is thermodynamically favorable. This critical size is an important parameter controlling at what stage in an aggregation reaction fibrils can form and replicate. We determined this value to be approximately 70 monomers using super-resolution and atomic force microscopy imaging of individual α-synuclein aggregates formed in solution over long time periods. This represents the minimum size for a stable α-synuclein fibril and we hypothesis the formation of aggregates of this size in a cell represents a tipping point at which rapid replication occurs.  相似文献   
4.
The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.  相似文献   
5.
The aim of this study is to examine the impact of surface modification on properties of flax fiber and flax-reinforced composites. For this purpose, acetic anhydride, sodium hydroxide, and silane were used to treat surface of the flax fiber. The effects of treatments on fiber were investigated by using contact angle, attenuated total reflectance-Fourier transform infrared, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Contact angle and AFM results revealed that sodium hydroxide-treated flax fibers have higher adhesion force on the fiber surface. Particularly, NaOH treatment improved the mechanical properties of the epoxy matrix composite.  相似文献   
6.
The three GxxxG repeating motifs from the C-terminal region of β-amyloid (Aβ) peptide play a significant role in regulating the aggregation kinetics of the peptide. Mutation of these glycine residues to leucine greatly accelerates the fibrillation process but generates a varied toxicity profile. Using an array of biophysical techniques, we demonstrated the uniqueness of the composite glycine residues in these structural repeats. We used solvent relaxation NMR spectroscopy to investigate the role played by the surrounding water molecules in determining the corresponding aggregation pathway. Notably, the conformational changes induced by Gly33 and Gly37 mutations result in significantly decreased toxicity in a neuronal cell line. Our results indicate that G33xxxG37 is the primary motif responsible for Aβ neurotoxicity, hence providing a direct structure–function correlation. Targeting this motif, therefore, can be a promising strategy to prevent neuronal cell death associated with Alzheimer's and other related diseases, such as type II diabetes and Parkinson's.  相似文献   
7.
8.
9.
Transient dynamics of tapping mode atomic force microscope (AFM) for critical dimension measurement are analyzed. A simplified nonlinear model of AFM is presented to describe the forced vibration of the micro cantilever-tip system with consideration of both contact and non-contact transient behavior for critical dimension measurement. The governing motion equations of the AFM cantilever system are derived from the developed model. Based on the established dynamic model, motion state of the AFM cantilever system is calculated utilizing the method of averaging with the form of slow flow equations. Further analytical solutions are obtained to reveal the effects of critical parameters on the system dynamic performance. In addition, features of dynamic response of tapping mode AFM in critical dimension measurement are studied, where the effects of equivalent contact stiffness, quality factor and resonance frequency of cantilever on the system dynamic behavior are investigated. Contact behavior between the tip and sample is also analyzed and the frequency drift in contact phase is further explored. Influence of the interaction between the tip and sample on the subsequent non-contact phase is studied with regard to different parameters. The dependence of the minimum amplitude of tip displacement and maximum phase difference on the equivalent contact stiffness, quality factor and resonance frequency are investigated. This study brings further insights into the dynamic characteristics of tapping mode AFM for critical dimension measurement, and thus provides guidelines for the high fidelity tapping mode AFM scanning.  相似文献   
10.
Linear polyurethanes were obtained the reaction of 1,6-hexamethylene diisocyanate with poly(ɛ-caprolactone)diol and butane-1,4-diol. Synthesis was carried out in the presence of 1, 3 and 5 wt.% of polydimethylsiloxane-poly(methyl methacrylate) core–shell nanopowder. Solutions of resulting polyurethanes were cast on PTFE plates and dried at 140 °C to form films. The presence of structures originating from modifier was confirmed by IR and XPS spectroscopy. DSC analysis revealed the presence of crystalline phase in all samples. Contact angles were determined using standard fluids and surface free energy parameters were calculated. The results of these investigations proved that modification with silicone-acrylic nanopowder resulted in significant increase in hydrophobicity of polyurethane surfaces Changes in surface characteristics were also reflected in surface images obtained in AFM studies. It is suggested that the polyurethane composites obtained in this study can be tested as coatings for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号