首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35706篇
  免费   2686篇
  国内免费   1541篇
电工技术   515篇
综合类   2368篇
化学工业   5428篇
金属工艺   7478篇
机械仪表   6615篇
建筑科学   853篇
矿业工程   1806篇
能源动力   629篇
轻工业   965篇
水利工程   116篇
石油天然气   1621篇
武器工业   242篇
无线电   1739篇
一般工业技术   5259篇
冶金工业   2461篇
原子能技术   250篇
自动化技术   1588篇
  2024年   61篇
  2023年   542篇
  2022年   922篇
  2021年   972篇
  2020年   1170篇
  2019年   956篇
  2018年   884篇
  2017年   1235篇
  2016年   1130篇
  2015年   1250篇
  2014年   1857篇
  2013年   1897篇
  2012年   2176篇
  2011年   2469篇
  2010年   1735篇
  2009年   1943篇
  2008年   1677篇
  2007年   2284篇
  2006年   2247篇
  2005年   1955篇
  2004年   1734篇
  2003年   1511篇
  2002年   1266篇
  2001年   1132篇
  2000年   933篇
  1999年   739篇
  1998年   623篇
  1997年   505篇
  1996年   425篇
  1995年   362篇
  1994年   316篇
  1993年   162篇
  1992年   185篇
  1991年   159篇
  1990年   156篇
  1989年   126篇
  1988年   62篇
  1987年   26篇
  1986年   24篇
  1985年   15篇
  1984年   21篇
  1983年   21篇
  1982年   24篇
  1981年   12篇
  1980年   8篇
  1979年   8篇
  1976年   6篇
  1975年   2篇
  1966年   2篇
  1955年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
2.
3.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
4.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
5.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
6.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   
7.
The incomplete polymerization of graphite carbon nitride (g-C3N4) due to the kinetic problems resulted in its high recombination rate of photo-generated electron-hole pairs. Hence, cyano-containing carbon nitride with coral-like morphology (CCCN) was prepared by the molten salt method with heptazine-based melem as precursor, which presented excellent separation rate of photo-generated electron-hole pairs. SEM exhibited that CCCN owned coral-like morphology which exposed ample active sites and enhanced the capture ability of visible light while FT-IR and XPS demonstrated that cyano groups appearing in coral-like carbon nitride enhanced the separation rate of photo-induced charge carriers. The synergistic effect of coral-like morphology and cyano groups endowed CCCN-15% with superior performance of both the photocatalytic H2 evolution (4207 μmol h?1 g?1) and Cr (Ⅵ) reduction (k = 0.059 min?1), approximately 16.8 and 6.0 times that of g-C3N4, which was comparable among the similar materials. Density functional theory calculation (DFT) revealed that cyano groups decreased the bandgap and strengthened the activation degree of reaction substrate, which enhanced the thermodynamic driving force and the interaction between catalyst and substrate. This work provided a potential strategy for both the renewable energy generation and environmental restoration.  相似文献   
8.
为了使双鸭山矿区煤炭资源最大程度地被采掘,减少资源浪费,提高矿井效益,延长矿井服务年限及促进矿井安全生产,以双鸭山矿区3个缓倾斜中厚煤层综采工作面为工程背景,对切顶卸压无煤柱开采技术进行深入探索,经过实际的检验证明,在双鸭山矿区缓倾斜中厚煤层中,采用切顶卸压技术进行沿空留巷,技术可行,经济合理,工艺简单,成巷率高。  相似文献   
9.
《Ceramics International》2022,48(22):32696-32702
Aluminum nitride (AlN) ceramics are becoming cutting-edge materials for electronic information and communication. However, raw AlN hydrolyzed rapidly, and the high storage costs of this material prevent widespread application. In this study, raw AlN was modified by boric acid (H3BO3) at 30 °C to enhance hydrolysis resistance. Transmission electron microscope (TEM), X-ray diffraction (XRD), the magic angle spinning nuclear magnetic resonance (27Al-MAS-NMR and 11B-MAS-NMR), and the fourier transform infrared spectrometer (FTIR) were used to characterize the powder before and after treatment, and the mechanism of hydrolysis resistance was determined. Modification with 0.1 M boric acid did not change the crystal phase of the AlN particles. The modified powder did not hydrolyse at 90% humidity and 70° Celsius. In the presence of boric acid, a network structure of B–O–B linkages ([BOn], n = 3 or 4) formed that was connected to the AlN core via chemical bonds of B–N–Al and B–O–Al. The protective 6 – 10 nm-thick layer that formed on the surface of the AlN crystal, prevented attack by water molecules and hindered the hydrolysis of aluminium nitride. This study provides an alternative means of preparing anti-hydrolysis AlN powders.  相似文献   
10.
Heteroatomic doping is an effective way to optimize the electronic structure of carbon nitride to boost photocatalytic performance. However, the extra introduced defects could result in the decrease of its crystallinity. In this work, crystalline K–I co-doped carbon nitride (K–I–CCN) was simply synthesized from molten salt ionthermal post-calcination in nitrogen atmosphere. Structure characterization results indicate that compared to K–CCN synthesized from conventional molten salt heat treatment in air, nitrogen heating atmosphere is more conductive for the formation of homogeneous pore structure of the catalyst, which has larger surface area and pore volume, while could repairing some defects and resulting in better polymerization crystallization. In addition, except the implanting of K, I doping is still retained after nitrogen heat treatment, thus forming K–I co-doping structure. Due to the positive charge effect of K–I co-doping, K–I–CCN has a narrower band gap, higher surface charge density and stronger charge transport, so it performs significantly enhanced photocatalytic H2 evolution activity from water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号