首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  完全免费   1篇
  机械仪表   15篇
  2014年   4篇
  2012年   4篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
运动意识任务的模式识别方法研究   总被引:4,自引:3,他引:1  
针对脑机接口研究中运动想象脑电信号的模式识别问题,提出了一种基于离散小波变换和AR双谱的特征提取方法.该方法首先利用Daubechies类小波函数对二路脑电信号进行3层分解,抽取小波系数的均值、能量均值、均方差三个特征;然后,采用5阶AR模型进行双谱估计,抽取双谱切片特征;最后,将这两类特征进行组合后使用马氏距离线性判别进行分类.利用BCI2003竞赛的标准数据,该方法使得EEG的识别正确率达到92.86%,与竞赛的最好结果(89.29%)相比提高了3.57%,为BCI研究中脑电信号的模式识别提供了有效的手段.  相似文献
2.
基于小波包分解的意识脑电特征提取   总被引:3,自引:1,他引:2  
针对2种不同意识任务(想象左手运动和想象右手运动)的脑-机接口(brain-computer interface,BCI)设计,提出了基于小波包分解的特征提取方法。首先深入研究了小波包变换,结合事件相关去同步化(event-related desynchronization,ERD)/事件相关同步化(event-related synchronization,ERS)现象,提出以小波包分解系数来考虑特征,然后对C3、C4导联脑电信号进行小波包分解系数方差和相对能量2种特征的提取,最后采用最简线性分类器进行分类。结果表明,2种特征对应的最大分类正确率均达到了85%,对应时间分别为4.34 s和4.39 s。因此,在保证分类正确率的前提下,所提方法更加简单和有效,为大脑意识任务分类提供了新思路。  相似文献
3.
一种基于DSP的脑机接口硬件系统设计   总被引:2,自引:0,他引:2  
为了实现脑机接口系统的便携性,提高脑机接口信号传输的通信速率,本系统应用高性能信号处理器TMS320VC5402DSP作为核心芯片,设计了一种基于DSP的脑机接口硬件系统。在DSP系统设计中,应用多通道缓冲串口(McBSP)实现了DSP与模数转换器(A/D)的接口设计;扩展了可以实现上电自动加载的FLASH;应用通用串行总线USB接口实现DSP系统与上位机的通信。本文详细介绍了这一种基于DSP芯片的脑机接口系统的硬件组成和工作原理,包括各模块的芯片选择和接口设计,并运用VISIO和PROTEL软件绘制了框图及电路图,为后续的工作打下了基础。  相似文献
4.
单通道视觉诱发脑电的单次提取方法研究   总被引:1,自引:0,他引:1  
针对单通道脑电信号单次提取识别率较低的问题,提出了一种正交B样条小波变换与Fisher线性判别相结合的方法,提高了视觉诱发电位P300的单次提取识别率。首先采用相干平均和小波变换的方法对脑电信号进行预处理,然后根据脑电信号的时-频特性及视觉诱发电位的锁时关系,提取出表征P300的8维小波系数模板,再次利用模板对单次样本进行特征提取,最后根据Fisher线性判别对测试样本进行分类识别,判断单次输入是否为视觉诱发脑电信号。实验结果表明,该方法对单次样本P300的平均识别率为95.10%。  相似文献
5.
P300 Speller中基于AdaBoost SVM的导联筛选研究   总被引:1,自引:0,他引:1  
P300 Speller是目前少数可以用于临床残疾人功能补偿的脑-机接口系统,P300 Speller的字符识别效率与脑电信号采集的头皮表面电极位置密切相关,过多的电极不但增加了使用者的不适感,且易引入噪声干扰进而影响系统的稳定性。采用并发展了一种基于AdaBoost SVM(adaptive boosting support vector machine)的特征筛选方法,对脑电导联进行优化筛选,通过对6位受试者的实验数据处理及分析,结果表明该方法可以在不显著影响识别效率的基础上降低导联数量76%以上。另外,相较于经典的SVM-RFE特征筛选方法,该方法极大降低了计算复杂度,更适用于训练数据庞大的脑电特征优化问题。  相似文献
6.
基于基因优化的脑电信号特征选择   总被引:1,自引:1,他引:0  
针对脑机接口( BCI)研究中脑电信号的特征选择问题,提出了一种基因优化算法(GO).GO算法在变异的基础上实现自下而上、由微观到宏观的自组织优化,可以在提高分类精度的同时很大程度上节省在线数据处理的时间.为检验提出方法的有效性,将其与基于AGA的特征选择方法以及基于Fisher距离的滤波选择方法进行了比较,实验结果表明基于GO的分类精度明显高于其他方法,获得了最好的模式识别性能.  相似文献
7.
基于小波变换和BP神经网络的视觉诱发电位识别   总被引:1,自引:0,他引:1  
结合小波变换和误差逆传播(Error Back Propagation,BP)神经网络对视觉诱发脑电信号(visual evoked potential,VEP)进行分类而产生脑机接口控制信号.利用一维离散小波变换提取强噪声背景下的低频微弱脑电信号,获取特征向量输入BP神经网络进行事件相关电位模式识别.实验表明,小渡变换特征向量提取方法能有效地实现信号的去噪、降维和特征提取,BP神经网络能比较准确地从VEP中识别出事件相关电位,进行10次测试的平均识别正确率为99.375%,有利于产生脑机接口控制信号.  相似文献
8.
在基于瞬态视觉诱发电位的脑机接口研究中,通过视觉诱发电位信号的提取与识别产生脑机接口控制信号。采用累加平均和小波滤波提取强噪声背景下微弱的视觉诱发电位。在小波变换域求取特征向量,将特征向量输入感知器进行视觉诱发电位模糊识别,产生脑机接口控制信号。实验表明,小波变换域特征向量提取方法能有效地实现信号的去噪、降维和特征提取,基于神经网络的模糊识别算法能比较准确地识别视觉诱发电位,有利于提高脑机接口的通讯率。  相似文献
9.
脑-机接口(Brain—computer interface,BCI)为人们提供了全新的与外界进行信息交流和控制的手段,具有非常重要的科学意义、学术价值和广阔的应用前景,是当今世界研究的热点。本文介绍了BCI的结构、类型和研究现状,分析了现有BCI系统存在的问题以及今后的发展方向。  相似文献
10.
脑电信号采集时很容易受到眼电信号的干扰,从而影响脑机接口系统的性能。为此,提出一种基于离散小波变换(DWT)和典型相关分析(CCA)的眼电伪迹自动去除方法,即 DCCA 法。首先,对采集的多导脑电信号和眼电信号进行离散小波变换,获得多尺度小波系数,并利用典型相关分析去除小波系数间的相关性,得到互不相关的典型小波系数;进而,利用相关系数判别眼迹成分,将相应典型小波系数置零并依次采用 CCA逆变换和 DWT逆变换重构剔除眼电伪迹后的脑电信号。基于9位实验者的4种眼电数据进行实验研究,并从统计学的角度对实验结果进行显著性检验。结果表明, DCCA法相对其他方法在均方根误差、信噪比方面具有显著优势,且具有较好的实时性,并表现出较强的适应能力。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号