首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  国内免费   1篇
  完全免费   19篇
  机械仪表   44篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
排序方式: 共有44条查询结果,搜索用时 25 毫秒
1.
基于EEMD能量熵和支持向量机的轴承故障诊断   总被引:2,自引:0,他引:2  
提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和支持向量机(Support Vector Machine,SVM)的轴承故障诊断方法。首先通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);轴承发生不同的故障时,信号在不同频带内的能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断轴承的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于轴承的故障诊断。  相似文献
2.
基于相关系数的EEMD转子信号降噪方法   总被引:2,自引:0,他引:2  
针对转子振动信号周期性强的特点,应用集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)对转子振动信号降噪过程中固有模式函数(intrinsic mode functions,简称IMF)分量的选取问题,提出了基于相关系数的EEMD降噪方法。首先,对原始信号进行EEMD分解得到IMF分量,并计算各IMF分量自相关函数与原信号自相关函数的相关系数;然后,根据相关系数选择相应的IMF分量重构信号最终达到对原信号降噪的目的;最后,对比了EEMD过程中不同加噪次数对降噪效率和效果的影响,给出了加噪次数的设置方法。仿真信号和转子振动信号的降噪结果表明了该降噪方法的可行性和有效性。  相似文献
3.
运用总体经验模态分解的疲劳信号降噪方法   总被引:2,自引:1,他引:1  
将总体经验模态分解(ensemble empircal mode decomposition,简称EEMD)用于疲劳应变信号降噪,并与小波变换(wavelet transform,简称WT)方法进行了对比.提出了基于EEMD方法的疲劳应变信号降噪计算步骤,并分别用于模拟信号、试验数据和实测资料的降噪处理.讨论了EEMD计算参数对降噪效果的影响,给出了计算参数的选取原则.结果表明,EEMD方法可以较好地降低疲劳信号的噪声,提高应力循环次数统计的准确度,具有自适应的特点.  相似文献
4.
为了更有效地同时诊断出滚动轴承故障位置及不同性能退化程度,提出了对滚动轴承不同状态振动信号进行特征提取和智能分类的故障诊断方法.该方法对各状态振动信号进行集合经验模态分解,但其效果依赖于总体平均次数和加入噪声的大小这2个重要参数,因此,提出集合经验模态分解中加入白噪声的准则.将分解后的一系列固有模态函数结合奇异值分解获取各状态的奇异值,并组成特征向量矩阵.将其输入到改进的超球结构多类支持向量机进行分类,从而实现滚动轴承正常、不同故障位置及性能退化程度的多状态同时智能诊断.实验结果表明,提出的集合经验模态分解方法中加入白噪声准则,可避免人为确定分解参数,提高其分解效率.基于优化参数的集合经验模态分解结合奇异值分解的智能诊断方法比已有的基于经验模态分解结合自回归模型的诊断方法识别率高.  相似文献
5.
The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.  相似文献
6.
基于改进Hilbert-Huang变换的转子碰摩故障诊断   总被引:1,自引:0,他引:1  
针对信号总体平均经验模式分解中的两个参数———所加白噪声标准差和总体平均次数难以设置的问题,通过仿真信号实验分析,给出了这两个参数设置的一般方法。以转子碰摩故障信号为对象,提出了改进的Hilbert-Huang变换(HHT)算法并将其用于提取转子碰摩故障特征。仿真和实验结果表明,改进的HHT算法能较好地提取出转子碰摩故障特征,与传统HHT算法相比,改进的HHT算法效果更好。  相似文献
7.
Effective fault location classification and especially performance degradation assessment of a roller bearing have been the subject extensive research, which can reduce costs and the nonscheduled down time. In this paper, a new fault diagnosis method based on multiple features, kernel principal component analysis (KPCA) and particle swarm optimization-support vector machine (PSO-SVM) is put forward. First, traditional features of the vibration signals in time-domain and frequency-domain are calculated, and then two types of features referred to as singular values and AR model parameters based on ensemble empirical mode decomposition (EEMD) are introduced. After that, the original feature vectors are mapped into higher dimensional space and the kernel principal components are extracted as new feature vectors, which are used as inputs to PSO-SVM. The experimental results show that the new diagnosis approach proposed in this paper can identify not only the fault locations but also the performance degradation of the roller bearing.  相似文献
8.
Time–frequency analyses are commonly used to diagnose the health of bearings by processing vibration signals captured from the bearings. However, these analyses cannot be guaranteed to be robust if the bearing signals are overwhelmed by large noise. Ensemble empirical mode decomposition (EEMD) was developed from the popular empirical mode decomposition (EMD). However, if there is large noise, it may be difficult to recover impulses from large noise. In this paper, we develop a hybrid signal processing method that combines spectral kurtosis (SK) with EEMD. First, the raw vibration signal is filtered using an optimal band-pass filter based on SK. EEMD method is then applied to decompose the filtered signal. Various bearing signals are used to validate the efficiency of the proposed method. The results demonstrate that the hybrid signal processing method can successfully recover the impulses generated by bearing faults from the raw signal, even when overwhelmed by large noise.  相似文献
9.
林近山 《机械传动》2012,(8):108-111
针对经验模式分解(EMD)和总体经验模式分解(EEMD)算法在齿轮箱故障诊断中的缺陷,提出了一种基于互补的总体经验模式分解(CEEMD)算法的齿轮箱故障诊断方法。首先介绍了CEEMD方法,然后将CEEMD方法用于实际齿轮箱的故障诊断中。结果表明,与基于EMD/EEMD算法的齿轮箱故障诊断方法相比,基于CEEMD算法的齿轮箱故障诊断方法不但可以有效地克服模态混叠和能量泄露现象,而且大大提高了计算效率,为齿轮箱的故障诊断提供了一种新的方法。  相似文献
10.
柴油机发电机组结构复杂,故障类型多样,其动力传动部件兼具往复机械与旋转机械的振动特性。传统的频谱分析主要通过利用傅里叶变换将在时域内难于分辩的信号映射到频域内进行分析,这对于具有平稳特点的原始信号比较有效,但是对于柴油发电机组而言,频谱分析难以提取其频率分量,因此难以实现故障诊断。通过总体平均经验模式分解(EEMD)的方法获得其本征模式函数的近似熵,将该近似熵作为特征向量结合支持向量机(SVM)进行分类,从而实现柴油发电机组的故障识别。通过实验仿真和某柴油发电机组振动异常问题的实测试验表明,该方法可以准确有效的提取其故障信息和频率,为柴油发电机组传动机构故障诊断提供支持。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号