首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16544篇
  免费   1338篇
  国内免费   708篇
电工技术   375篇
综合类   1260篇
化学工业   1426篇
金属工艺   4527篇
机械仪表   4036篇
建筑科学   374篇
矿业工程   562篇
能源动力   325篇
轻工业   283篇
水利工程   989篇
石油天然气   618篇
武器工业   210篇
无线电   249篇
一般工业技术   1996篇
冶金工业   1010篇
原子能技术   71篇
自动化技术   279篇
  2024年   56篇
  2023年   366篇
  2022年   507篇
  2021年   558篇
  2020年   592篇
  2019年   529篇
  2018年   561篇
  2017年   736篇
  2016年   674篇
  2015年   600篇
  2014年   722篇
  2013年   751篇
  2012年   894篇
  2011年   959篇
  2010年   744篇
  2009年   860篇
  2008年   738篇
  2007年   1069篇
  2006年   1089篇
  2005年   848篇
  2004年   792篇
  2003年   618篇
  2002年   555篇
  2001年   499篇
  2000年   385篇
  1999年   310篇
  1998年   258篇
  1997年   286篇
  1996年   223篇
  1995年   201篇
  1994年   136篇
  1993年   92篇
  1992年   88篇
  1991年   62篇
  1990年   46篇
  1989年   49篇
  1988年   42篇
  1987年   24篇
  1986年   8篇
  1985年   17篇
  1984年   18篇
  1983年   12篇
  1982年   13篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Soils and Foundations》2022,62(3):101159
Suffusion erosion, characterized as the selective detachment and transportation of finer particles by seepage flow, is hazardous to the stability and serviceability of geotechnical structures. The removal of finer particles deteriorates the structure and fabric of the soil, leading to the degradation of its mechanical properties. Studies into the effects of suffusion on mechanical behavior have so far produced disparate results depending on the pre-erosion relative density of the specimens tested. To investigate this issue, small cyclic and monotonic loading tests were performed on intact and eroded gap-graded silty sand specimens in three dispersed density states, using a triaxial cell modified for the purpose of erosion. The variation of Young's modulus showed an inverse relationship with the pre-erosion density of the specimen, as the small strain stiffness decreased in the dense cases and increased in the loose cases. Conversely, Poisson's ratio increased in value as suffusion progressed regardless of the initial density of the specimens. In the contractive phase of monotonic loading, the densification of the coarse soil skeleton by the downward seepage flow resulted in a decrease in contractiveness and an increase in secant stiffness. In the dilative phase, the increase in porosity by the erosion of finer particles reduced the dilatancy and peak strength of the specimens. The results suggest that the pre-suffusion density determines the primary locus of affected mechanical behavior in triaxial compression, which shifts from the contractive phase to the dilative phase with the increase in pre-suffusion density. The critical state strength, inferred using stress–dilatancy theory, was largely unaffected by the erosion of finer particles. As the results indicate, pre-erosion density may be of practical significance in assessing the vulnerability to deterioration and collapse of geotechnical formations and structures subjected to suffusion erosion.  相似文献   
2.
《Soils and Foundations》2022,62(6):101224
Internal erosion is a major threat to hydraulic earth structures, such as river levees and dams. This paper focuses on suffusion and suffosion phenomena which are caused by the movement of fine particles in the granular skeleton due to seepage flow. The present study investigates the impact of internal erosion on the dynamic response under cyclic torsional shear and monotonic responses under triaxial compression and torsional simple shear. A series of experiments, using a gap-graded silica mixture with a fines content of 20%, is performed under loose, medium, and dense conditions using a novel erosion hollow cylindrical torsional shear apparatus. The erosion test results indicate that the critical hydraulic gradient and the rate of erosion are density-dependent, where a transition from suffosion to suffusion is observed as the seepage continues. Regardless of the sample density, variations in the radial strain and particle size distribution, along the specimen height after erosion, are no longer uniform. Furthermore, the dynamic shearing results show that the small-strain shear modulus increases, but the initial damping ratio decreases after internal erosion, probably due to the removal of free fines. In addition, the elastic threshold strain and reference shear strain values are found to be higher for the eroded and non-eroded specimens, respectively. Finally, based on drained monotonic loading, the post-erosion peak stress ratio increases remarkably under triaxial compression, while that under torsional simple shear depends on the relative density where the direction of loading is normal to the direction of seepage. These observations indicate that the horizontal bedding plane becomes weaker, while the vertical one becomes stronger after downward erosion.  相似文献   
3.
摘要:采用盐浴实验、扫描电镜、透射电镜、拉伸实验和磨损实验等手段,研究了配分工艺对中碳Ti Mo钢组织和性能的影响,分析了不同配分工艺处理下的组织演变和性能变化。结果表明,显微组织主要由回火马氏体、渗碳体、(Ti,Mo)C粒子组成。随着配分时间的延长和配分温度的升高,板条马氏体数量减少,马氏体板条厚度增加,边界钝化。此外,随着配分温度从310℃提高至400℃,抗拉强度、硬度和低温冲击韧性同时下降,分别降低约250MPa、56HV和15J。最后,Ms以下温度配分(310℃)试样的耐磨损性能明显优于Ms以上温度配分(400℃)试样。Ms以下温度配分试样磨损表面形貌以塑性变形为主,Ms以上温度配分试样磨损表面以犁沟为主。  相似文献   
4.
5.
Corrosion and wear failures are bottlenecks for restricting applications and developments of Al-based functional materials. As a new lubrication technology, superhydrophobic preparation provides an effective way to settle Al alloy corrosion. The preparation methods of superhydrophobic Al alloys are mainly multistep strategies. In this study, superhydrophobic Al alloy, has been prepared by an efficient one-step electrochemical etching process. Meanwhile, its micromorphology has been observed by a scanning electron microscope. The wettability has been measured by video optical contact angle meter. The corrosion behavior has been tested by electrochemical workstation, and wear performance has been characterized by friction tester. The results show that the micro-nanoterraced concave–convex structure has been fabricated and an as-prepared surface exhibits excellent superhydrophobic behavior. Further electrochemical and tribological tests show that corrosion resistance and wear resistance have also been significantly improved. This study provides a new method to prepare wear-resistant and corrosion-resistant Al alloy for widening applications of multifunctional Al-based engineering materials.  相似文献   
6.
In the offshore oil and gas industry, mainly focusing on the use of rigid or flexible pipes of subsea infrastructure applied to risers or flowlines, one of the greatest difficulties is the interpretation of the combined effects of the various correlated phenomena (hydrodynamic effects of intermittent flow, the effects of corrosivity of the environment in addition to variations in pressure, temperature, and dynamic loading). On the basis of this scenario, defining the degree of severity of each of the correlated system variables becomes of fundamental importance for establishing reliable criteria for selecting materials for subsea application. The established flow pattern directly affects the corrosion rate (or the pipe material mass loss), but the balance of other variables including possible changes in the physical and transported fluid chemical properties may increase the damage up to an order of magnitude, which is a piece of information normally not foreseen in design criteria. Therefore, to improve the understanding of the corrosion study influenced by multiphase flow, a testing loop was designed and assembled at the Corrosion and Protection Laboratory of the Institute for Technological Research, in which API X80 steel coupons were positioned in locations with a 0° and 45° inclinations. Tests were conducted by varying the partial pressure of the gaseous phase containing blends of CO2 and H2S with N2 balance, mixed with the liquid phase containing light oil and heavy oil in water with salinity (NaCl)-simulating oil well conditions with 80% water cut. The main objective of this study is to establish models that can predict the corrosion intensity in conditions close to those obtained experimentally. To achieve results, the multiple regression and Box–Cox transformation methods were applied. These models will make possible damage prediction and optimization of matrix parameters for the multiphase-loop test.  相似文献   
7.
《Ceramics International》2022,48(11):15144-15151
A novel micro-nano-structured Cr3C2–NiCr cermet coating was prepared on 316L stainless steel by high-velocity oxygen fuel spraying technology (HVOF). Cermet coatings with different contents of micro-and nano-sized Cr3C2 particles as the hard phase and a NiCr alloy matrix as the bonding phase were prepared and characterized in terms of porosity, microhardness, and corrosive wear resistance in a 3.5% NaCl solution and artificial seawater. Compared to nanostructured coatings, micro-nano-structured coatings avoid decarburization and reduce nanoparticle agglomeration during the spray process, and mechanical and electrochemical properties were improved in comparison with those of conventional coatings. The micro-nano-structured Cr3C2–NiCr coating rendered low porosity (≤0.34%) and high microhardness (≥1105.0HV0.3). The coating comprising 50% nano-sized Cr3C2 grains exhibited the best corrosive wear resistance owing to its densest microstructure and highest microhardness. Furthermore, compared to static corrosion, the dynamic corrosion of the coatings led to more severe mechanical wear, because corrosion destroyed the coating surface and ions promoted corrosion to invade coatings through the pores during corrosion wear.  相似文献   
8.
《Ceramics International》2022,48(16):22928-22942
Abrasive wear is a complex surface degradation process driven by various factors such as microstructure, the mechanical properties of the target material, the abrasive, loading conditions, and the surrounding environment. In this study, in situ TiC reinforced Zinc Aluminum alloy composites were prepared through a liquid metallurgy route and the synergistic effect of applied load, sliding speed, abrasive grit size and TiC content on the high-stress abrasive wear response were investigated. The test materials' wear response was established by characterising wear surfaces, sub-surfaces, debris particles, and an abrasive medium. The study suggests that the wear resistance of the specimens decreases with an increase in the applied load, and the composite reinforced with 10 wt % of TiC shows superior wear behaviour among all the test materials. The study also points out that the ZA-27 alloy reinforced with in situ TiC can be a suitable replacement of the conventionally used materials for automotive applications.  相似文献   
9.
To improve the wear resistance of the chemically bonded phosphate ceramic coatings, MWCNTs are selected as the reinforcement after the modification. The high temperature wear experiment is carried out to investigate the wear behavior of the coatings with different temperatures. The results suggest that, when the temperature is below 500℃, MWCNTs can decrease friction coefficient, and the lowest friction coefficient is about 0.28, but MWCNTs lose the lubricant function at 500℃ and the friction coefficient keeps at the level of ~ 0.68. In addition, the wear resistance of coatings is improved with the introduction of MWCNTs at 100℃ and 300℃ (the wear rate is below 15X10-3mm3/Nm), but keeps similar level at 500℃ (the wear rate is ~ 22 × 10−3mm3/Nm). Besides, the wear mechanism of the coatings reinforced by MWCNTs is also investigated based on the wear behavior and microstructural characterizations. MWCNTs improve the fracture toughness by preventing the crack generation and forming the bridge when crack occurs, which leads to smooth wear tracks and good wear resistance of coatings. The coatings with MWCNTs achieve poor wear resistance at 500℃ because MWCNTs lose their strength and resistance to fatigue by oxidizing.  相似文献   
10.
In this study, wear and friction behavior of two based-composites from the Ti-Si-C system, (40 wt% TiC; 28 wt% Ti5Si3; 17 wt% Ti3SiC2) and (18 wt% TiC; 26 wt% Ti5Si3; 41 wt% Ti3SiC2) reinforced by 15 wt% of large size SiC (100-150 µm) particles were investigated. The four-phase composites exhibited approximatively the same friction coefficient (µ ~ 0.9) under high loads (10 N and 7 N). The composite with high Ti3SiC2 showed higher wear rate values by one order of magnitude. However, under 1 N, the composite with high TiC content showed a higher running-in period and a lower steady state µ value (0.37 after 1000 m sliding distance). Scanning electron microscopy, Energy Dispersive X-Ray and Raman spectroscopy analysis of the worn surfaces of the two composites revealed that oxidation was the dominant wear mechanism. The oxidation process and the removal kinetics of the oxides during sliding controlled the tribological behavior of the composites. The influence of processing variables on microstructures development and wear mechanisms of the composites is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号