首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   3篇
  机械仪表   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
基于ELM和近似熵的脑电信号检测方法   总被引:2,自引:1,他引:1  
脑电癫痫波的自动检测与分类对癫痫病情的诊断具有重要意义。提出了一种基于极端学习机(extreme learning ma-chine,ELM)和近似熵的脑电信号检测方法。首先,计算脑电信号的近似熵作为非线性特征,并与利用小波变换技术提取的线性特征波动指数相结合,组成特征向量,然后将特征向量送入单隐层前馈神经网络,采用ELM学习算法训练网络。实验表明,与BP(backpropagation)和SVM(support vector machine)算法相比,ELM在训练时间和识别精度两方面性能最佳,对用于实验的脑电数据检测识别率达到98%以上。  相似文献
2.
针对缸盖振动信号的非平稳特性,提出了基于小波包相关系数和极限学习机的汽车发动机失火故障诊断系统.首先,对原始信号进行小波包分解,然后计算得到每个样本的能量熵和每个样本各子频带重构信号与原始信号的相关性系数.分别利用相关系数法和能量熵融合峭度的方法建立特征向量,随后输入到BP神经网络和极限学习机中进行训练和测试.实验结果表明,该方法可以有效地反映故障产生的差异并准确地识别单缸失火故障,具有精度高、训练时间短的优点.  相似文献
3.
为提高下肢假肢步态识别的准确性,提出一种基于鱼群(fish swarm ,简称FA)算法优化极限学习机(extreme learning machine,简称 ELM)的模式识别方法。首先,提取张量投影特征,分析了特征值选取的合理性;其次,采用主成分分析法降维;最后,利用鱼群算法进化极限学习机分类识别平地行走、上楼、下楼、上坡及下坡5种步态,识别准确率达到 97.45%。通过实验比较了该算法与极限学习机等分类器在假肢步态分类上的识别准确率与识别时间,结果表明,FA-ELM方法识别准确率优于其他方法。  相似文献
4.
为了有效提取滚动轴承振动信号的故障特征和提高分类识别精度,提出了一种基于冗余二代小波包变换-局部特征尺度分解(redundant second generation wavelet packet transform-local characteristic scale decomposition,简称RSGWPT-LCD)和极限学习机(extreme learning machine,简称ELM)相结合的故障特征提取和分类识别方法。首先,利用希尔伯特变换对原始振动信号进行处理,得到包络信号;其次,基于双层筛选机制,结合冗余二代小波包变换(redundant second generation wavelet packet transform,简称RSGWPT)和局部特征尺度分解(local characteristic-scale decomposition,简称LCD)方法对包络信号进行分解,筛选出包含主要信息的内禀尺度分量(intrinsic scale components,简称ISCs);然后,对提取的各ISCs分量构建初始特征矩阵并进行奇异值分解(singular value decomposition,简称SVD),将得到的奇异值作为表征各损伤信号的特征向量;最后,以提取的特征向量为输入样本,建立ELM模式分类器对滚动轴承损伤信号进行识别。信号仿真和实测数据表明,该方法可有效提取振动信号故障特征,提高分类识别精度,实现滚动轴承故障诊断。  相似文献
5.
针对湿式球磨机在磨矿过程中内部负荷靠专家经验难以准确预测的问题,提出一种基于改进的共生生物搜索 (ameliorated symbiotic organisms search, 简称ASOS) 极限学习机(extreme learning machine, 简称ELM)的磨机负荷软测量方法。首先,利用ELM算法建立磨机负荷软测量模型,运用ASOS算法优化软测量模型的隐含层参数;其次,以筒体振动与振声信号的特征信息构建磨机负荷特征向量,并将其作为软测量模型的输入,将磨机负荷参数作为输出;最后,通过磨矿负荷检测实验和对比分析表明,磨机负荷软测量模型的负荷参数预测准确率较高,泛化能力较强,为磨机磨矿效率的提高及控制优化提供了有益的指导。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号