首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33178篇
  免费   2342篇
  国内免费   2309篇
电工技术   1046篇
综合类   2003篇
化学工业   6341篇
金属工艺   4161篇
机械仪表   2821篇
建筑科学   1048篇
矿业工程   585篇
能源动力   1495篇
轻工业   1954篇
水利工程   233篇
石油天然气   1342篇
武器工业   193篇
无线电   4655篇
一般工业技术   7315篇
冶金工业   1135篇
原子能技术   531篇
自动化技术   971篇
  2024年   62篇
  2023年   367篇
  2022年   599篇
  2021年   787篇
  2020年   853篇
  2019年   757篇
  2018年   753篇
  2017年   1042篇
  2016年   1056篇
  2015年   1072篇
  2014年   1574篇
  2013年   1868篇
  2012年   2067篇
  2011年   2607篇
  2010年   1946篇
  2009年   2034篇
  2008年   1731篇
  2007年   2244篇
  2006年   2208篇
  2005年   1798篇
  2004年   1644篇
  2003年   1378篇
  2002年   1149篇
  2001年   1045篇
  2000年   892篇
  1999年   765篇
  1998年   646篇
  1997年   517篇
  1996年   464篇
  1995年   413篇
  1994年   361篇
  1993年   295篇
  1992年   215篇
  1991年   160篇
  1990年   109篇
  1989年   98篇
  1988年   62篇
  1987年   38篇
  1986年   26篇
  1985年   23篇
  1984年   28篇
  1983年   13篇
  1982年   16篇
  1981年   8篇
  1980年   5篇
  1979年   8篇
  1978年   3篇
  1976年   3篇
  1963年   3篇
  1959年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
2.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
3.
In this work, coupling effects of water content, temperature, oxygen density, and polytetrafluoroethylene (PTFE) loading on oxygen transport through an ionomer thin film on a platinum surface in a catalyst layer of a proton exchange membrane (PEM) fuel cell are investigated using molecular dynamics approach. Taguchi orthogonal algorithm is employed to comprehensively analyze the coupling effects in a limited number of cases. It is found that the effect of operation temperature is the weakest among the four factors, which has the smallest effect index 14.4. Coupling effects including the PTFE loadings on the oxygen transfer through the ionomer thin film is uncovered. Less PTFE loadings should be beneficial for the oxygen transfer. The chemical potential gradient is considered as the major driven force for the oxygen transport through the ionomer thin film, and oxygen density is the dominating factor, significantly affecting the chemical potential in the thin film.  相似文献   
4.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
5.
《Ceramics International》2022,48(21):31559-31569
Colloidal Zinc oxide quantum dots (ZnO QDs) prepared with varying concentrations through precipitation method were deposited on flexible ITO/PET substrates using spin-coating technique. Various characterization tools were utilized to investigate the morphological, structural, electrical and optical properties of the films. The crystallinity of the films was found to improve with increasing ZnO QD concentration (ZQC) as evident from the X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) studies. Crystallographic and optical parameters were evaluated and explained in depth. The average nanograin size and bandgap were increased and decreased respectively, from ~5 nm to ~8 nm and 3.29 eV–3.24 eV with an increase in ZQC from 10 mg/mL to 70 mg/mL. Columnar structure growth of the films is revealed by AFM results. The films showed decent optical transparency up to 81%. All the ZnO films exhibited n-type semiconducting property as indicated by the electrical measurements with carrier mobility and low resistivity of 12.21–26.63 cm2/Vs and 11.84 × 10?3 to 13.16 × 10?3 Ω cm respectively. Based on the experimental findings, ZnO QD nanostructure film grown at 50 mg/mL is envisaged to be a potential candidate for flexible perovskite photovoltaic application.  相似文献   
6.
AimsConsidering individual variability in regards to the effects of orthokeratology (ortho-k) on myopia progression and controversies regarding the precise underlying mechanism, the aim of this study was to investigate several ocular measurements associated with axial length (AL) growth in children wearing ortho-k lenses.MethodsIn this retrospective chart review, medical records of 53 Chinese children who wore ortho-k lenses over the course of 12 months were reviewed. Baseline variables included age at initiation of ortho-k wear, refractive error (spherical equivalent, SE), central corneal thickness (CCT), and flat and steep keratometry of corneal principal meridians. The change of anterior chamber depth (ACD) and the change of crystalline lens thickness (CLT) between baseline and the 12-month follow-up were also analyzed. The contributions of all analyzed variables to AL change were assessed using univariate and multivariate regression analyses.ResultsInitially, the results of paired t-test showed that CLT and AL were significantly increased after 12 months of ortho-k wear compared with that at baseline (P = 0.001 and < 0.001). The ACD did not change significantly after 12 months compared with that at baseline (P = 0.491). Subsequently, univariate analyses showed that a reduced rate of AL elongation was found in children who were older age at initiation of ortho-k wear (P = 0.028), had greater SE (higher degree of myopia) at baseline (p = 0.006), had thicker CCT at baseline (P = 0.04), and had greater increase of CLT (P = 0.001) in 12 months. At last, only greater SE (higher degree of myopia) and greater increase of CLT were associated with smaller increases of AL in multivariable analyses, (P = 0.003 and 0.001).ConclusionsBoth CLT and AL were significantly increased in children with overnight ortho-k wear after 12 months of follow-up. Greater baseline SE and greater increase of CLT were associated with less increase in AL during ortho-k wear in children with myopia.  相似文献   
7.
开发设计了一款新型尾气颗粒物过滤净化装置,该装置利用颗粒物惯性作用和水膜吸附效应实现颗粒物与柴油机尾气的分离。通过分析计算得到形成湿润壁面连续水膜的条件。选择合适的波形板面,搭建柴油机尾气颗粒物检测系统。试验结果表明,设计的柴油机尾气颗粒净化装置可以起到很好地净化颗粒物的作用,尤其是在柴油机刚刚启动低速运转的情况下净化效率高。  相似文献   
8.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
9.
激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、电池极片等薄膜类材料厚度的在线测量。带材宽幅方向扫描测厚时由于扫描架往复运动会产生机械振动,影响在线测厚精度。针对该问题,以锂离子电池极片厚度测量为例,使用双激光差动式测厚平台对电池极片和铜箔分别进行厚度测量,然后对测厚数据进行频谱分析,探究其振动规律的相似性,并基于频谱分析结果采用滑动带阻滤波方式对测厚数据进行处理,滤波后极片和铜箔的厚度极差分别降低了33.4%和73.8%,有效过滤了机械振动导致的测量误差,可满足极片和铜箔厚度测量的精度要求。  相似文献   
10.
The wearable intelligent electronic product similar to electronic skin has a great application prospect. However, flexible electronic with high performance pressure sensing functions are still facing great challenges. In this paper, the highly sensitive flexible electronic skin (FES) based on the PVDF/rGO/BaTiO3 composite thin film was fabricated using the near-field electrohydrodynamic direct-writing (NFEDW) method. The PVDF/rGO/BaTiO3 composite solution was directly written on flexible substrate by the NFEDW method to fabricate FES with micro/nano fiber structure, which has the function of sensing pressure with high sensitivity and fast response. The surface morphology and microstructure were characterized by SEM, AFM, and optical microscope in detail. The fabricated FES has high sensitivity (59 kPa−1) and faster response time (130 ms). FES has been successfully applied to the detection of human motion and subtle physiological signals. The experimental results show that FES has good stability and reliability. FES can recognize human motion, and it has a broad application prospect in the field of wearable devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号