首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   17篇
  国内免费   31篇
电工技术   9篇
综合类   21篇
化学工业   85篇
金属工艺   44篇
机械仪表   16篇
建筑科学   5篇
矿业工程   1篇
能源动力   6篇
轻工业   10篇
水利工程   1篇
石油天然气   10篇
武器工业   3篇
无线电   10篇
一般工业技术   141篇
冶金工业   10篇
原子能技术   3篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   10篇
  2013年   17篇
  2012年   30篇
  2011年   52篇
  2010年   29篇
  2009年   41篇
  2008年   30篇
  2007年   33篇
  2006年   24篇
  2005年   23篇
  2004年   20篇
  2003年   16篇
  2002年   8篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
排序方式: 共有376条查询结果,搜索用时 34 毫秒
1.
地铁混凝土处于地下空间,容易受到地下水的碳酸性侵蚀;碱集料反应 (AAR)是一种严重的混凝土耐久性问题,既难以发现又难以修补,由两者共同作用引起的混凝土耐久性降低严重影响地铁隧道的正常使用.为研究纳米材料对地铁混凝土在碳酸性侵蚀和AAR共同作用下耐久性的影响,在普通混凝土中掺入适量纳米SiO2和纳米Fe2O3,利用自行研制的碳酸性侵蚀试验箱进行试验,采用碳酸性侵蚀深度、膨胀率和声速作为测试指标来评价纳米混凝土在碳酸性侵蚀和AAR共同作用下的耐久性.试验结果表明:掺入纳米颗粒后,混凝土的膨胀率和侵蚀深度有了明显降低,而声速有了明显提升,说明纳米混凝土的耐久性优于普通混凝土;在182 d龄期时,掺量为2%的纳米SiO2混凝土耐久性改善最明显,侵蚀深度和膨胀率最小,声速最大且声速下降幅度最小;其次是掺量为1%的纳米Fe2O3混凝土.由于纳米颗粒特殊的物理化学性质,改善了混凝土内部的微观结构和孔溶液的化学组成,使碳酸性侵蚀和碱集料反应共同作用下混凝土的耐久性得到了提高.  相似文献   
2.
为了改善铝粉的表面氧化,提高其对含能材料热分解的催化作用,以电爆炸铝粉和二水合氯化铜(CuCl_2·2H_2O)为原料,利用置换反应法,实现了纳米铜粒子在铝粉表面的快速沉积,制备了包覆均匀的Cu/Al复合材料。利用扫描电镜(SEM)、透射电镜(TEM)、X?射线粉末衍射(XRD)、电子能谱(EDS)等对其结构和形貌进行了表征。在不同的升温速率下测试了Cu/Al复合材料与黑索今(RDX)(质量比1∶5)混合物的DSC曲线。计算了该混合物热分解反应的动力学参数。结果表明,电爆炸铝粉表面的氧化层通过氟化铵的刻蚀作用被剥离,复合材料含有单质铝和单质铜晶相,无氧化铜及氧化铝晶相,纳米级铜颗粒均匀包覆在铝粉表面,复合材料粒径为200~500 nm。加入Cu/Al复合材料后,RDX的初始分解温度和分解峰温分别降低8.51℃和26.43℃,分解热提高296 J·g~(-1),热分解活化能降低19.19 kJ·mol~(-1),表明Cu/Al复合材料可促进RDX的热分解行为。  相似文献   
3.
储油罐环氧基钛纳米复合导静电涂层耐蚀性能   总被引:1,自引:1,他引:0  
目的研究钛纳米填料粒径和含量对环氧基钛纳米复合导静电涂层耐蚀性能的影响。方法将不同粒径的钛纳米粉(经聚乙烯基吡咯烷酮表面预处理)按不同量加入双酚A(E)型环氧树脂中,之后涂覆在Q235钢表面形成导静电复合涂层。通过表面电阻测试、截面形貌观察、电化学极化曲线和阻抗谱测试,分别评价复合涂层的导静电性能、截面结构和耐蚀性。结果钛纳米粉添加量(占涂层质量百分比)为28%时,随着钛纳米粉粒径从40 nm增大到200 nm,环氧基复合导静电涂层的表面电阻降低,截面结构更加杂乱,添加100 nm钛纳米粉的涂层阻抗和极化曲线阳极电流分别出现最大值和最小值。添加的钛纳米粉粒径为100 nm时,随着添加量从7%增至28%,环氧基复合导静电涂层的表面电阻降低,截面孔洞增大,阻抗值降低,极化曲线阳极电流增大。结论钛纳米填料的加入可以有效提高涂层的导静电性能、致密性和耐蚀性。当添加量为28%时,钛纳米粒径大于100 nm后,涂层截面形貌更加杂乱,耐蚀性降低。对于100 nm粒径的钛纳米填料,当其添加量大于7%时,复合涂层的致密性和耐蚀性降低。  相似文献   
4.
Here, the Ni-based metallic nano-particles (Ni, NiMo and NiMoP) were electrodeposited on/in the surface of ERGO/CE substrate from a citrate-based electrolyte and their catalytic activities investigated towards methanol and ethanol electro-oxidation. The physicochemical characterizations of all prepared electrocatalysts were investigated by different electrochemical and non-electrochemical techniques. The electrocatalytic activities of the modified electrodes towards the electro-oxidation of methanol and ethanol were studied in 0.1 M NaOH solution by conventional electrochemical methods such as cyclic voltammetry and chronoamperometry. In the optimized electrodeposition conditions, the obtained electrochemical results indicate that the NiMoP/ERGO/CE displays dramatically improved electrocatalytic activity [Jpf (mA.cm−2) = 263.14 for methanol and Jpf (mA.cm−2) = 253.35 for ethanol], stability and poisoning tolerance towards the electro-oxidation of these fuels in alkaline solution. Finally, for comparison, the Ni (alone) and NiMo (binary) electrodeposited on/in the ERGO/CE (without P) and also studying the influence of the ERGO layers on the surface of CE, the NiMoP/CE (without ERGO) were prepared and applied as electrocatalysts.  相似文献   
5.
干湿循环和氯离子(Cl~-)渗透是影响海工混凝土耐久性的主要因素,为研究不同环境条件及掺加纳米颗粒对海工混凝土抗Cl~-渗透性能的影响,分别将不同掺量的纳米SiO_2和纳米Fe_3O_4掺入到普通混凝土中,通过干湿循环和全浸泡两种方式进行Cl~-渗透对比试验,采用化学滴定法测得混凝土内不同深度的Cl~-含量.试验结果表明:干湿循环作用加速了Cl~-向混凝土内的迁移,并使混凝土的总、自由、结合Cl~-含量及Cl~-结合能力均高于相同龄期的全浸泡试件,且随着干湿循环次数的增加两者Cl~-含量的差值越来越大;两种环境条件下,纳米混凝土的总、自由Cl~-含量均低于普通混凝土,而结合Cl~-含量和Cl~-结合能力均高于普通混凝土,两种纳米颗粒的最佳掺量都是2%,且纳米SiO_2的改善效果优于纳米Fe_3O_4.纳米颗粒的表面效应和填充效应改善了混凝土的孔结构,造成Cl~-在混凝土内迁移困难;不同掺量的纳米SiO_2和纳米Fe_3O_4可以不同程度的提高水化产物对Cl~-的化学结合和物理吸附能力,减少混凝土内的自由Cl~-含量,从而提高海工混凝土的抗Cl~-渗透性能.本文研究成果可为海工混凝土的耐久性设计提供参考.  相似文献   
6.
对磁性Fe3O4纳米粒固定化脂肪酶催化桐油制备生物柴油进行了研究,分步探讨了硼酸盐缓冲液用量、固定化酶用量、醇油摩尔比、反应温度、固定化酶清洗与否对转酯反应的影响,以及固定化酶的操作稳定性。结果表明:将正己烷与桐油体积比定为2∶?1,然后加入与桐油等摩尔的甲醇、桐油体积6%的硼酸盐缓冲液及7.5 mg/mL(以桐油体积计)固定化酶,反应5 h和12 h各加入与桐油等摩尔的甲醇(总的醇油摩尔比3∶?1),并每次添加甲醇前用丙酮清洗固定化酶,45?℃、200 r/min 反应26 h后,甲酯转化率可达91.2%。该固定化脂肪酶连续催化10批次反应后,甲酯转化率仍然可达84.1%,具有一定的工业应用价值。  相似文献   
7.
ABSTRACT

Hydrogen production by catalytic gasification in supercritical water (SCW) is a promising way to utilise biomass resource. Supercritical water not only provides homogeneous and rapid reaction environment for the biomass gasification but also causes catalyst agglomeration problems. In order to prepare activity and stable catalyst for biomass gasification in supercritical water, supercritical water synthesis method was utilised and the preparation method was investigated. Ni, Co, Zn and Cu metal elements were loaded on TiO2 particles which was proved to be hythothermally steady in supercritical water. And nano-particles were successfully made. Based on gas chromatography/mass spectrometer (GC/MS), scanning electron microscopy, energy dispersive spectrometer (EDS) and X-ray diffraction analysis methods, it turned out that metal catalysts have a uniform spherical structure with diameter around 30 nm. Metal catalysts synthesised with supercritical hydrothermal method showed certain catalytic effects. Ni catalyst had the best performance in stability while Zn catalyst possessed highest hydrogen yield.  相似文献   
8.
以制备的纳米改性矿物油为研究样品,对添加纳米颗粒前后矿物绝缘油在100℃、老化35天、每隔7天分别测试油样微水含量、击穿电压、介质损耗及酸值,考核老化前后矿物绝缘油性能。测试结果显示,老化前后不同矿物绝缘油理化电气性能均会出现不同程度劣化,添加有纳米颗粒的矿物油表现出更好的抗氧化性能。  相似文献   
9.
将银粗糙化的蝶翅三维结构引入到表面增强拉曼散射(surface enhanced Raman scattering,SERS)基材中,提高检测效果。采用绿带翠凤蝶蝶翅作为基板,将纳米银金属颗粒负载其上,合成了经有序粗糙化的表面增强拉曼散射基底。采用场发射扫描电镜及透射电镜分析了有序银粗糙化蝶翅SERS基底的形貌特征。并以罗丹明6G作为探针分子,可检测到浓度低至10~(-14)mol/L的标样溶液,且检测效果好于二维平板SERS基底,经计算得到绿带翠凤蝶SERS基底的增强因子为1.57×10~7。在试验的基础上,结合三维有限时域差分的计算方法(finite difference time domain,FDTD),模拟计算得到绿带翠凤蝶SERS基底的电场强度E分布,其log|E|2的值为3.85,其对激发光的反射率仅为6%。研究表明银粗糙化的蝶翅三维结构,可以使表面的电场强度有显著增强。  相似文献   
10.
采用微乳液的方法制备了平均粒径为85 nm的ZnS纳米粉体。主要测试了咔唑衍生物及8-羟基喹啉与ZnS纳米粒子复合后在四氢呋喃、N,N-二甲基甲酰胺中的单/双光子荧光特性。研究发现咔唑衍生物的双光子荧光强度较未加入纳米ZnS时只有提高不足20%,而8-羟基喹啉与纳米ZnS复合后得到了一种新的发光体系,其荧光强度可提高2~4倍,同时荧光发射峰出现了较大程度的红移,其红移达116 nm。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号