首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6169篇
  免费   1330篇
  国内免费   526篇
电工技术   255篇
综合类   667篇
化学工业   1187篇
金属工艺   227篇
机械仪表   608篇
建筑科学   149篇
矿业工程   137篇
能源动力   136篇
轻工业   96篇
水利工程   58篇
石油天然气   51篇
武器工业   64篇
无线电   541篇
一般工业技术   680篇
冶金工业   111篇
原子能技术   28篇
自动化技术   3030篇
  2024年   13篇
  2023年   87篇
  2022年   75篇
  2021年   223篇
  2020年   219篇
  2019年   186篇
  2018年   203篇
  2017年   189篇
  2016年   264篇
  2015年   340篇
  2014年   389篇
  2013年   400篇
  2012年   427篇
  2011年   516篇
  2010年   502篇
  2009年   485篇
  2008年   551篇
  2007年   560篇
  2006年   460篇
  2005年   401篇
  2004年   330篇
  2003年   261篇
  2002年   183篇
  2001年   131篇
  2000年   101篇
  1999年   67篇
  1998年   65篇
  1997年   58篇
  1996年   57篇
  1995年   43篇
  1994年   26篇
  1993年   28篇
  1992年   35篇
  1991年   22篇
  1990年   22篇
  1989年   12篇
  1988年   22篇
  1987年   7篇
  1986年   12篇
  1985年   19篇
  1984年   12篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有8025条查询结果,搜索用时 15 毫秒
1.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
2.
The through-thickness conductivity of carbon fiber reinforced polymer (CFRP) composite was increased by incorporating multiwalled carbon nanotubes in the interlaminar region. Carbon nanotubes (CNTs) were dispersed in a polyethylenimine (PEI) binder, which was then coated onto the carbon fiber fabric. Standard vacuum-assisted resin infusion process was applied to fabricate the composite laminates. This modification technique aims to enhance the electrical conductivity in through-thickness direction for the purpose of nondestructive testing, damage detection, and electromagnetic interference shielding. CNT concentrations ranging from 0 to 0.75 wt% were used and compared to pristine CFRP samples (reference). The through-thickness conductivity of the CFRP exhibited an improvement of up to 781% by adopting this technique. However, the dispersion of CNT in PEI led to a viscosity increase and poor wetting properties which resulted in the formation of voids/defects, poor adhesion (as shown in scanning electron micrographs) and the deterioration of the mechanical properties as manifested by interlaminar shear strength and dynamic mechanical analysis measurements.  相似文献   
3.
Food safety is the primary goal for food and drink manufacturers. Cleaning and disinfection practices applied to the processing environment are vital to maintain this safety; yet, current approaches can incur costly downtime and the potential for microorganisms to grow and establish, if not effectively removed. For that reason, manufacturers are seeking nonthermal, online, and continuous disinfection processes to control the microbial levels within the processing environment. One such emerging technique, with great potential, is cold atmospheric pressure plasma (CAP). This review presents the latest advances and challenges associated with CAP-based technologies for the decontamination of surfaces and equipment found within the food-processing environment. It provides a detailed overview of the technology and a comprehensive analysis of the many CAP-based antimicrobial studies on food-contact surfaces and materials. As CAP is considered an emerging technique, many of the recent studies are still in the preliminary stages, with results obtained under widely different conditions. This lack of cohesive information and an inability to directly compare CAP systems has greatly impeded technological development. The review further explores the challenge of scaling CAP technology to meet industry needs, considering aspects such as regulatory constraints, environmental credentials, and cost of use. Finally, a discussion is presented on the future outlook for CAP technology in this area, identifying key challenges that must be addressed to promote industry uptake.  相似文献   
4.
Under the circumstance of perceptual consumption, it is still challenging to grasp consumer's emotions and demands due to the large search space, diversified preferences, and easy fatigue of consumers. To reduce user fatigue and enlarge search space, a novel method was presented to design and optimize the pattern of yarn-dyed plaid fabric using the isolation niche genetic algorithm and rough set theory. Each pattern was encoded as a chromosome based on the real number code. The population was initialized and evolved using INGA to maintain the diversity. The rough set theory was adopted as the fitness function of isolation niche genetic algorithm to extract the consumer's demands. After multiple evolutions, a large set of practical patterns of the yarn-dyed plaid fabric are obtained. Experiments were carried out by 24 testers of different ages and genders. The results prove that the proposed method based on the isolation niche genetic algorithm and rough set theory is feasible and effective, supplying references to the designer.  相似文献   
5.
Application-specific optical glass properties are achieved by utilizing complex material compositions. This can be problematic in reactive plasma-assisted deterministic surface processing since a non-volatile surface layer may form depending on the glass composition, which affects the etch rate and thereby the local etching depth. In this investigation, a model algorithm is proposed to tackle some restrictions in applying fluorine-based plasma jet as etching tool utilized for freeform surface machining of optics made of complex glass composition, like borosilicate crown glass (e.g., N-BK7®). In this regard, firstly an analytical model is proposed for estimating the depth-dependent etch rate function. Subsequently, a recursive simulation algorithm is introduced for convolving the derived depth-dependent etch rate function with the given dwell time matrix to simulate a deterministic freeform generation process. By the proposed simulation algorithm, the impeding influence of the residual layer on the reduction of etching depth is computed prior to a real experiment in order to scale the local dwell time to ensure the targeted local removal. Finally, the simulated freeform shape is compared with the corresponding result of an etching experiment to validate the feasibility of the proposed approach.  相似文献   
6.
四元数调制(Quaternion Modulation,QMod)是一种新型高传输速率的极化调制(Polarized Modulation,PMod)技术,是未来卫星通信系统中极具潜力的多元调制方案之一。QMod将数据块分成4块,其中两块是传输数据信号,另外两块则映射到极化状态部分。每个极化状态块均有一位比特,那么它们可以产生4个极化状态组合。这些状态组合可以用来确定传输数据块在四元数4个不同维度中的位置,从而获得两位额外的传输比特。相比于传统的PMod技术,QMod有着更高的频谱效率。为了进一步挖掘QMod的潜力,介绍了由可重构智能表面(Reconfigurable Intelligent Surface,RIS)辅助的QMod系统,同时推导了该系统的平均误码率理论上界,并在瑞利信道下进行了BER性能仿真。仿真结果表明,RIS辅助的PMod或者QMod系统即便在较低的SNR情况下仍有良好的BER性能,并且随着RIS单元数的增多,其BER性能会逐步提升。  相似文献   
7.
In this article, we have studied the effect of carbonaceous nanofillers viz. fullerenol (0D), carboxylated multi-wall carbon nanotube (MWCNT, 1D), hydroxylated graphene (2D) and combination of carboxylated CNT and hydroxylated graphene as 3D in thermoplastic polyurethane on the tensile properties of the fabricated cellular structures. The concentration of nano-fillers was varied as 0.1, 1, and 5 wt%. Tensile properties of the nanocomposite cellular structures were measured as per ASTM D882 at 20°C (below glass transition temperature, Tg) and 40°C (above Tg). The results have shown that the tensile strength was found to increase by 200%–300% and the tensile modulus was found to increase by 150%–300% for 2D and 3D nano-fillers while significantly poor results were observed for 0D. However, the test data tensile strength and modulus showed marginal increase at 20°C and marginally low at 40°C for 1D filler. The interfacial adhesion was calculated by using experimental tensile data and the predictive models. The interfacial adhesion parameter (Bσ) calculated using Pukanszky equation was found significantly higher value for 2D (Bσ20 = 195.8) and 3D (Bσ20 = 192.0) fillers while poor adhesion was observed for 0D (Bσ20 = −81.6) fillers. The developed cellular structured materials were also evaluated by attenuated total reflection Fourier transform IR spectra, differential scanning calorimetry, X-ray diffraction, scanning electron microscope, and transmission electron microscope.  相似文献   
8.
Bonding between polymers through interdiffusion of macromolecules is a well-known mechanism of polymer adhesion. A new polymer bonding mechanism in the solid state, taking place at ambient temperatures well below the glass transition value (Tg), has been recently reported; in this mechanism, bulk plastic compression of polymer films held in contact led to adhesion over timescales of the order of a fraction of a second. In this study, we prepared various blends of plasticized polymer films with desirable ductility from amorphous and semicrystalline powders of hydroxypropyl methylcellulose and polyvinyl alcohol derivatives; then, we observed the bonding of these polymers at ambient temperatures, up to 80 K below Tg, purely through mechanical deformation. The deformation-induced bonding of the polymer films studied in this work led to interfacial fracture toughnesses in the range of 1.0–21.0 J/m2 when bulk plastic strains between 3% and 30% were imposed across the films. Scanning electron microscopy observation of the debonded interfaces also confirmed that bonding was caused by deformation-induced macromolecular mobilization and interpenetration. These results expand the range of applicability of sub-Tg, solid-state, deformation-induced bonding processes.  相似文献   
9.
Liquid marble (LM) is a droplet that is wrapped by hydrophobic solid particles, which behave as a non-wetting soft solid. Based on these properties, LM can be applied in fluidics and soft device applications. A wide variety of functional particles have been synthesized to form functional LMs. However, the formation of multifunctional LMs by integrating several types of functional particles is challenging. Here, a general strategy for the flexible patterning of functional particles on droplet surfaces in a patchwork-like design is reported. It is shown that LMs can switch their macroscopic behavior between a stable and active state on super-repellent surfaces in situ by jamming/unjamming the surface particles. Active LMs hydrostatically coalesce to form a self-sorted particle pattern on the droplet surface. With the support of LM handling robotics, on-demand cyclic activation–manipulation–coalescence–stabilization protocols by LMs with different sizes and particle types result in the reliable design of multi-faced LMs. Based on this concept, a single bi-functional LM is designed from two mono-functional LMs as an advanced droplet carrier.  相似文献   
10.
图像增强在提高SAR图像舰船目标检测精度方面具有十分重要的意义。由于传统算法不能很好地对SAR图像进行目标增强,提出了基于改进粗糙集理论和引力场强度的目标增强算法。通过借鉴引力场相关理论知识,将粗糙集条件属性集中的梯度属性改进为引力场强度属性,从而实现对原图像的目标增强。与其他算法进行了实验比较,结果表明提出的改进算法相比于其他算法更适用于SAR图像特性,能更好地对舰船目标像素进行针对性增强,具备一定的工程应用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号