首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67001篇
  免费   7773篇
  国内免费   2348篇
电工技术   2965篇
技术理论   2篇
综合类   3084篇
化学工业   15112篇
金属工艺   3578篇
机械仪表   4935篇
建筑科学   5747篇
矿业工程   2049篇
能源动力   1757篇
轻工业   7101篇
水利工程   1123篇
石油天然气   1934篇
武器工业   500篇
无线电   5364篇
一般工业技术   7671篇
冶金工业   3086篇
原子能技术   712篇
自动化技术   10402篇
  2024年   103篇
  2023年   1132篇
  2022年   2246篇
  2021年   3736篇
  2020年   2064篇
  2019年   2091篇
  2018年   2254篇
  2017年   2909篇
  2016年   4058篇
  2015年   4667篇
  2014年   5156篇
  2013年   5089篇
  2012年   3976篇
  2011年   3706篇
  2010年   2879篇
  2009年   3018篇
  2008年   2937篇
  2007年   4175篇
  2006年   4188篇
  2005年   3674篇
  2004年   2512篇
  2003年   2325篇
  2002年   1698篇
  2001年   1002篇
  2000年   809篇
  1999年   748篇
  1998年   553篇
  1997年   446篇
  1996年   433篇
  1995年   326篇
  1994年   320篇
  1993年   259篇
  1992年   198篇
  1991年   166篇
  1990年   175篇
  1989年   142篇
  1988年   112篇
  1987年   79篇
  1986年   73篇
  1985年   68篇
  1984年   84篇
  1983年   54篇
  1982年   43篇
  1981年   40篇
  1980年   46篇
  1966年   25篇
  1964年   34篇
  1962年   64篇
  1959年   21篇
  1955年   22篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
1.
益生菌可在肠道定植从而发挥抗炎或抗氧化活性,有利于宿主肠道健康。本实验研究了从新疆传统发酵乳制品中分离得到的8?株植物乳杆菌对大肠杆菌侵袭和过氧化氢刺激肠上皮细胞HT-29的保护作用。结果表明:在8?株植物乳杆菌中,植物乳杆菌35具有最高的黏附能力。植物乳杆菌35可通过取代、竞争、排阻的方式抑制大肠杆菌对HT-29细胞的黏附,抑制率分别为42.60%、59.17%、60.19%。植物乳杆菌35及其多糖可抑制大肠杆菌刺激HT-29细胞产生白细胞介素-8;同时保护HT-29细胞免受过氧化氢的损伤,增加超氧化物歧化酶、谷胱甘肽过氧化物酶活力水平并降低丙二醛含量。结论:植物乳杆菌35及其粗胞外多糖具有抑制大肠杆菌O157诱导的炎症性肠病的潜力。  相似文献   
2.
目的:探讨姜黄素的主要肠道代谢物四氢姜黄素(tetrahydrocurcumin,THC)对血小板活化和聚集的影响及其可能的分子机制。方法:在体外实验中,用不同浓度的THC(0、0.5、1、10 μmol/L)提前与健康人纯化血小板共同孵育40 min,然后加入凝血酶激活血小板2 min,用流式细胞术测定血小板表面CD62P和CD63的表达量,用酶联免疫吸附法测定血小板释放血小板因子-4(platelet factor-4,PF4)和趋化因子配体-5(chemokine ligand 5,CCL5)水平,用血小板聚集仪检测血小板释放ATP水平和血小板最大聚集率,用Western blot蛋白免疫印迹法检测血小板磷酸肌醇-3-激酶(phosphoinositide 3-kinase,PI3K)和Akt蛋白的磷酸化水平。结果:与模型组(血小板悬液中加入0.05%二甲基亚砜)相比,THC能抑制凝血酶诱导的血小板表面CD62P和CD63的表达,抑制PF4、CCL5和ATP的释放,降低血小板最大聚集率,下调PI3K和Akt蛋白的磷酸化水平,且呈浓度依赖效应,其中10 μmol/L的浓度下作用效果显著(P<0.01、P<0.001)。PI3K的特异性激动剂740 Y-P可部分逆转THC对PF4和CCL5释放和血小板聚集的抑制作用(P<0.05、P<0.01)。结论:THC具有显著抑制血小板活化和聚集的作用,其机制可能是THC可下调PI3K/Akt介导的信号通路。  相似文献   
3.
《Soils and Foundations》2022,62(1):101089
In recent years, the mechanical properties of frozen soils under complex stress states have attracted significant attention; however, limited by the test apparatus, true triaxial tests on frozen soils have rarely been conducted. To study the strength and deformation properties of frozen sand under a true triaxial stress state, a novel frozen soil testing system, i.e., a true triaxial apparatus, was developed. The apparatus is mainly composed of a temperature control system, a servo host system, a hydraulic servo loading system, and a digital control system. Several true triaxial tests were conducted at a constant minor principal stress (σ3) and constant intermediate principal stress ratio (b) to study the effect of intermediate principal stress (σ2) on the mechanical properties of frozen sand. The test results showed that the stress–strain curve can be mainly divided into three stages, with evidence of strain hardening characteristics. The strength, elastic modulus, and friction angle increased with the increase in b from 0 to 0.6, but decreased when increasing b from 0.6 to 1, whereas the cohesion varied little with the variation in b. The deformation in the direction of σ2 changed from dilative to compressive and that in the direction of σ3 remained dilative throughout.  相似文献   
4.
《Soils and Foundations》2022,62(5):101206
Coral sand is one kind of the important building materials in coral reef engineering practice. The use of cement as a stabilizing agent can significantly improve the mechanical properties of coral sands and is widely applied in the subbase engineering construction in coral reef islands. Cement-stabilized coral sand structures may contain high contents of fine coral particles and salinity because of the high crushability of coral sands and the existence of seawater surrounding them. In this study, the effects of coral sand powders and seawater salinity on the dynamic mechanical properties of cemented coral sand (CCS) were investigated through the split Hopkinson pressure bar (SHPB) tests and Scanning Electron Microscope (SEM) analysis. It was found that the strength (i.e., the peak stress) of CCS specimens increased firstly and then decreased with the increase of powder content. The specimens reached the maximum peak stress when 3% powder content was included. The initial improvement of CCS strength was attributed to the pore-filling effect of coral powders, namely, the micro pores of the CCS specimens could be more effectively filled with higher percentages of coral powders being used in the experiments. However, excessive coral powders resulted in the reduction of specimen strength because these powders could easily be cemented into agglomerates by absorbing water from the specimens. These agglomerates could reduce the cementation strength between the coarse coral particles and the cement. Meanwhile, the peak stress of CCS specimens was found to be negatively correlated with the average strain rate and the ultimate strain. The degree of specimen fracture was found to be correlated with the amount of specific energy absorption during the tests. Furthermore, the “sulfate attack” caused by the inclusion of salinity of water had different influences on the CCS specimens with different coral powder contents. The ettringite and gypsum produced in “sulfate attack” could fill the pores and lead to cracking of the specimens, significantly affecting the specimen strength.  相似文献   
5.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
6.
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO) play an important role, being the most aggressive towards biomolecules. The reactions of HO with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO, and by CB triplets allowed for assigning transient species to the pathways of products formation.  相似文献   
7.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号