首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19476篇
  免费   2172篇
  国内免费   1211篇
电工技术   348篇
综合类   2493篇
化学工业   2252篇
金属工艺   1826篇
机械仪表   1291篇
建筑科学   5777篇
矿业工程   768篇
能源动力   484篇
轻工业   594篇
水利工程   950篇
石油天然气   1023篇
武器工业   158篇
无线电   774篇
一般工业技术   2651篇
冶金工业   905篇
原子能技术   194篇
自动化技术   371篇
  2024年   37篇
  2023年   242篇
  2022年   474篇
  2021年   604篇
  2020年   673篇
  2019年   645篇
  2018年   647篇
  2017年   748篇
  2016年   812篇
  2015年   783篇
  2014年   1277篇
  2013年   1358篇
  2012年   1406篇
  2011年   1524篇
  2010年   1153篇
  2009年   1155篇
  2008年   1067篇
  2007年   1159篇
  2006年   1214篇
  2005年   885篇
  2004年   757篇
  2003年   638篇
  2002年   554篇
  2001年   488篇
  2000年   418篇
  1999年   387篇
  1998年   305篇
  1997年   236篇
  1996年   213篇
  1995年   188篇
  1994年   152篇
  1993年   141篇
  1992年   126篇
  1991年   88篇
  1990年   63篇
  1989年   62篇
  1988年   30篇
  1987年   32篇
  1986年   19篇
  1985年   24篇
  1984年   16篇
  1983年   12篇
  1982年   10篇
  1981年   2篇
  1980年   13篇
  1979年   17篇
  1978年   2篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
1.
2.
《Soils and Foundations》2022,62(3):101156
In this paper, a newly developed 3-dimentional discrete element model (DEM) for gravel-rubber mixtures (GRMs), namely DEM4GRM, that is capable of accurately describing the macro-scale shear response (from small to large deformation) of GRMs in a direct shear box apparatus is presented. Rigid gravel grains are modelled as simple multi-shape clumps, while soft rubber particles are modeled by using deformable 35-ball body-centered-cubic clusters. Mixtures are prepared with different volumetric rubber content (VRC) at 0, 10, 25, 40 and 100%, statically compressed under 30, 60 and 100 kPa vertical stress and then sheared, by closely simulating a reference laboratory test procedure. The variation of micro-scale factors such as fabric, normal and tangential force anisotropy is carefully examined throughout the shearing process and described by means of novel micro-mechanical relationships valid for GRMs. Moreover, strong-force chains are scrutinized to identify the transition from rigid to soft granular skeleton and gain insights on the load transfer and deformation mechanisms of GRMs. It is shown that the development of the fabric and force anisotropy during shearing is closely related to the macro-scale shear strength of GRMs, and strongly depends on the VRC. Besides, strong-force chains appear to be primarily formed by gravel-gravel contacts (resulting in a rigid-like mechanical behavior) up to VRC = 30%, and by rubber-rubber contacts (causing a soft-like mechanical response) beyond VRC = 60%. Alternatively, at 30% < VRC < 60%, gravel-rubber contacts are predominant in the strong-force network and an intermediate mechanical behavior is observed. This is consistent with the behavioral trends observed in the macro- and micro-mechanical responses.  相似文献   
3.
《Soils and Foundations》2022,62(6):101224
Internal erosion is a major threat to hydraulic earth structures, such as river levees and dams. This paper focuses on suffusion and suffosion phenomena which are caused by the movement of fine particles in the granular skeleton due to seepage flow. The present study investigates the impact of internal erosion on the dynamic response under cyclic torsional shear and monotonic responses under triaxial compression and torsional simple shear. A series of experiments, using a gap-graded silica mixture with a fines content of 20%, is performed under loose, medium, and dense conditions using a novel erosion hollow cylindrical torsional shear apparatus. The erosion test results indicate that the critical hydraulic gradient and the rate of erosion are density-dependent, where a transition from suffosion to suffusion is observed as the seepage continues. Regardless of the sample density, variations in the radial strain and particle size distribution, along the specimen height after erosion, are no longer uniform. Furthermore, the dynamic shearing results show that the small-strain shear modulus increases, but the initial damping ratio decreases after internal erosion, probably due to the removal of free fines. In addition, the elastic threshold strain and reference shear strain values are found to be higher for the eroded and non-eroded specimens, respectively. Finally, based on drained monotonic loading, the post-erosion peak stress ratio increases remarkably under triaxial compression, while that under torsional simple shear depends on the relative density where the direction of loading is normal to the direction of seepage. These observations indicate that the horizontal bedding plane becomes weaker, while the vertical one becomes stronger after downward erosion.  相似文献   
4.
A series of large scale direct shear experiments is used to investigate the effect of the geomembrane (GMB) surface roughness, geotextile (GTX) properties, and GTX ageing, on the GMB-GTX interface shear behaviour. Interfaces involving smooth, coextruded textured, and structured surface GMBs underlying four different nonwoven needle-punched staple fibres (GTXs) with mass per unit areas between 200 and 2400 g/m2, and a geocomposite drain (GCD) are examined at normal stresses between 250 and 1000 kPa. The results showed that the interlocking between the GMB and GTX increased with increasing the GMB asperity height and/or decreasing the mass per unit area of the GTX. For the interfaces that involved GTXs preaged prior to the shear box experiments for up to 2 years at 85 °C, it was found that the 2400 g/m2 heat bonded two-layered GTX exhibited internal shear failure at low shear displacements. However, all the highly aged single layered GTXs showed an increase in the peak interface friction angles with the increase in their ageing. For these single layered GTX, the results suggest that assessing the interface friction angles using unaged GTXs for the stability analysis is conservative as long as the GTX remains intact in the field.  相似文献   
5.
Interface shear strength of geosynthetic clay liners (GCL) with the sand particles is predominantly influenced by the surface characteristics of the GCL, size and shape of the sand particles and their interaction mechanisms. This study brings out the quantitative effects of particle shape on the interaction mechanisms and shear strength of GCL-sand interfaces. Interface direct shear tests are conducted on GCL in contact with a natural sand and a manufactured sand of identical gradation, eliminating the particle size effects. Results showed that manufactured sand provides effective particle-fiber interlocking compared to river sand, due to the favorable shape of its grains. Further, the role of particle shape on the hydration of GCL is investigated through interface shear tests on GCL-sand interfaces at different water contents. Bentonite hydration is found to be less in tests with manufactured sand, leading to better interface shear strength. Grain shape parameters of sands, surface changes related to hydration and particle entrapment in GCL are quantified through image analysis on sands and tested GCL surfaces. It is observed that the manufactured sand provides higher interface shear strength and causes lesser hydration related damages to GCL, owing to its angular particles and low permeability.  相似文献   
6.
A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were conducted on specimens prepared at a relative density of 50%, with and without fiber reinforcements. The liquefaction behavior was investigated by considering the effects of fiber contents ranging from 0% to 1%, fiber lengths varying from 3 mm to 12 mm and loading patterns. The results indicated that increasing fiber content and fiber length resulted in a decrease in the deformation, a reduction in pore pressure accumulation rate, and improved the liquefaction resistance of calcareous sands. Additionally, the risk of soil liquefaction could be significantly reduced when the fiber content was greater than 0.8%. The multidirectional loading had a considerable effect in reducing the liquefaction resistance compared to unidirectional loading. Further, the stiffness degradation of calcareous sands decreased with increasing fiber content and fiber length. The pore pressure generated in the cyclic tests was analyzed and was found to be affected by fiber content. A pore pressure prediction model was proposed to obtain the pore pressure characteristics of fiber-reinforced calcareous sands under various fiber content conditions.  相似文献   
7.
There are several methods for estimating bed shear stress in the literature, but comprehensive comparisons among them are limited and under specific conditions. This study compared these methods first on a bare smooth bed, and then for a single geobag on a rough bed in the interest of determining the stability of geobags used in riverbank protection structures. The geobag was filled with cement or sand and tested under different open channel flow conditions. The turbulent kinetic energy method appeared to best represent the local bed shear stress on the geobag when using the newly calibrated proportionality constants. The Reynolds stress method via extrapolation was relatively unaffected by changes to the geobags shape and measurement locations, suggesting this method inadequately represents the local bed shear stress. The Patel method and the universal law of the wall method failed to represent local bed shear stress in the rough bed cases due to instrument limitations and the breakdown of the law of the wall. This study highlights the impact of different methods on the bed shear stress estimation.  相似文献   
8.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
9.
AimsConsidering individual variability in regards to the effects of orthokeratology (ortho-k) on myopia progression and controversies regarding the precise underlying mechanism, the aim of this study was to investigate several ocular measurements associated with axial length (AL) growth in children wearing ortho-k lenses.MethodsIn this retrospective chart review, medical records of 53 Chinese children who wore ortho-k lenses over the course of 12 months were reviewed. Baseline variables included age at initiation of ortho-k wear, refractive error (spherical equivalent, SE), central corneal thickness (CCT), and flat and steep keratometry of corneal principal meridians. The change of anterior chamber depth (ACD) and the change of crystalline lens thickness (CLT) between baseline and the 12-month follow-up were also analyzed. The contributions of all analyzed variables to AL change were assessed using univariate and multivariate regression analyses.ResultsInitially, the results of paired t-test showed that CLT and AL were significantly increased after 12 months of ortho-k wear compared with that at baseline (P = 0.001 and < 0.001). The ACD did not change significantly after 12 months compared with that at baseline (P = 0.491). Subsequently, univariate analyses showed that a reduced rate of AL elongation was found in children who were older age at initiation of ortho-k wear (P = 0.028), had greater SE (higher degree of myopia) at baseline (p = 0.006), had thicker CCT at baseline (P = 0.04), and had greater increase of CLT (P = 0.001) in 12 months. At last, only greater SE (higher degree of myopia) and greater increase of CLT were associated with smaller increases of AL in multivariable analyses, (P = 0.003 and 0.001).ConclusionsBoth CLT and AL were significantly increased in children with overnight ortho-k wear after 12 months of follow-up. Greater baseline SE and greater increase of CLT were associated with less increase in AL during ortho-k wear in children with myopia.  相似文献   
10.
为获得设计需要的巨型水轮发电机剪断销的剪切力,得到剪切力波动受控的批量剪断销,通过拉伸试验、冲击试验、硬度试验和剪断销剪切试验等讨论了全尺寸剪断销剪切试验的可行性,分析了剪切试验时正常剪断和非正常剪断的剪断销材料性能差异,探究了剪断销的剪切力质量稳定性控制方法。结果表明:控制剪断销料坯的布氏硬度波动,可实现间接控制剪断销剪切强度的波动;通过试验总结的六步法可达到控制批量剪断销质量和剪切力波动的目的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号