首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
建筑科学   7篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
研究了时间、配比和温度对桥梁铰缝加固用环氧树脂力学性能的影响。试验结果表明,随着固化温度的升高,胶体固化时间减少,树脂自身强度增加,抗弯、抗压和劈裂强度增大,断裂伸长率降低,胶体发生脆断所需拉伸力减小;不同温度下,抗弯、抗压和劈裂抗拉强度随时间的增长,基本呈现上升趋势。升高温度有利于树脂的早期粘结强度,但是后期可能存在老化,使得粘结能力下降;固化剂的含量在一定范围内增加,树脂固化时间缩短,但是对最终粘结强度影响不大。  相似文献   
2.
通过测试不同桥梁伸缩缝材料体系在不同温度下的凝结时间、抗压强度,结果表明硫铝酸盐胶凝材料体系凝结时间随温度降低而延长,在10℃~40℃时大致是线性关系,在-5℃~10℃时大致是指数关系。硫铝酸盐胶凝材料体系在低温条件下,掺加普硅、硅灰和碳酸锂有利于缩短凝结时间和前期抗压强度的提高,对后期抗压强度无不利影响,而聚合物的掺入会延长凝结时间和降低前后期的抗压强度。硫铝酸盐胶凝材料体系在高温条件下,掺加普硅、硅灰和碳酸锂会缩短凝结时间,对前期强度提高明显但会降低后期抗压强度;掺加聚合物后会延长凝结时间并提高后期抗压强度。  相似文献   
3.
为了评价厂拌乳化沥青冷再生技术在甘肃省的使用状况,本文对省内铺筑厂拌乳化沥青冷再生路段按照一定频率进行了钻芯,并与室内成型试验做了对比试验,测试了芯样15℃劈裂强度及半圆弯曲试验(SCB)。结果表明:厂拌乳化沥青混合料随着运营时间的增加,其15℃劈裂强度及断裂能增大,长期性能相比早期性能明显提高。  相似文献   
4.
为实现钢渣的全粒度应用及提高利用率,小于等于3mm的细粒式钢渣可作为黄土路基稳定材料使用。设计对照组水泥稳定黄土和石灰稳定黄土,并通过无侧限抗压强度和CBR承载比评价,以确定细粒式钢渣稳定黄土的可行性和最佳掺量。结果表明,随着钢渣掺量增加,钢渣稳定黄土的最大干密度增大,最佳含水率减小。石灰稳定黄土最佳含水率最大,钢渣稳定黄土最小。钢渣稳定黄土的无侧限抗压强度随钢渣掺量增加而增大,10%钢渣掺量的无侧限抗压强度大于3%水泥稳定黄土和6%石灰稳定黄土。水泥稳定黄土CBR承载比远大于钢渣稳定黄土和石灰稳定黄土,且黄土膨胀量最小,最大仅为0.14%,钢渣稳定黄土膨胀性最大,且随钢渣掺量的增大而增大,最大为1.2%。10%钢渣稳定黄土CBR大于6%石灰稳定黄土,10%钢渣膨胀量小于6%石灰稳定黄土,大于7%石灰稳定黄土。10%钢渣掺量可替代6%石灰掺量稳定黄土路基,综合分析选择10%作为最佳细粒径钢渣稳定黄土掺量。  相似文献   
5.
研发了一种具有低粘度和较高早期强度的不中断交通桥梁铰缝加固用环氧树脂,能够在提供足够可操作时间的前提下,完成对桥梁铰缝的不中断交通加固。测试结果表明该材料具有与市场已有同类型产品相当的抗剪强度、弹性模量和拉伸强度等力学性能,抗交通荷载干扰能力强,而在低温和潮湿基面条件下,则具有更加优异的加固效果。  相似文献   
6.
以水泥、粉煤灰和硅灰为原材料,利用修正的Andreasen-Andersen(MAA)模型指导超高性能混凝土(UHPC)配合比设计,研究了配合比、水胶比和养护方式对UHPC工作性能、抗压强度、表观密度和水化产物特性的影响,以残差平方和(RSS)作为堆积密实度指标,分析了UHPC抗压强度和水化产物特性.结果表明:硅灰对提升UHPC的堆积密实度有利;当UHPC的残差平方和达到最小值570.64时,标准养护28 d和蒸气养护3 d条件下的UHPC抗压强度分别可达到最大值140.4、153.9 MPa,说明基于MAA模型设计的UHPC配合比合理;通过研究UHPC水化产物特性,发现UHPC中水泥水化反应不完全,高水胶比和高水泥掺量可促进水化反应,粉煤灰与硅灰在碱性环境中反应会消耗氢氧化钙,形成水化硅酸钙(C-S-H)凝胶,降低了体系的钙硅摩尔比,改善了UHPC的显微结构,提升了UHPC的致密性与强度.  相似文献   
7.
在UHPC材料中,通过在粉煤灰0%、20%、30%、40%的掺量下掺入不同碱激发剂(氢氧化钙、氢氧化钠、硫酸钠、硫酸钙、碳酸钠、水玻璃)测试砂浆浆体流动性、经时损失和胶砂试件抗压强度、抗折强度。结果表明:在UHPC材料中,随着粉煤灰掺量的增加,流动性改善明显,对抗压抗折强度影响较大;在粉煤灰掺量较小时,碱激发剂效果不明显,随着粉煤灰掺量的增加,碱激发剂的效果逐渐凸显出来;在粉煤灰掺量为30%、40%时,硫酸钙为最为突出的碱激发剂。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号