首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
建筑科学   9篇
一般工业技术   4篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
排序方式: 共有13条查询结果,搜索用时 156 毫秒
1.
以赤泥、粉煤灰、石英砂等为主要原料,掺加一定量的泡沫,经可塑成型、煅烧等工艺制备了一种轻质多孔烧结材料。研究煅烧温度对其抗折、抗压强度、收缩率等性能的影响;利用扫描电子显微镜对其进行微观形貌分析,探讨其烧结机理。结果表明,最佳烧结温度为1150℃,最佳试样的体积密度为691kg/m3,抗压、抗折强度分别为4.2MPa和3.2MPa,导热系数为0.110W/(m·K),烧成收缩率为3.9%。  相似文献   
2.
以过氧化苯甲酰(BPO)为引发剂, 采用二步化学接枝法对聚丙烯纤维进行接枝丙烯酸改性, 利用正交分析法研究了引发温度、BPO浓度、接枝温度、接枝时间及丙烯酸(AA)浓度对纤维接枝率的影响, 并评价了改性前后纤维与水泥基体的界面结合性能。结果表明: 上述因素对纤维接枝率的影响大小为引发温度>BPO浓度>接枝时间>接枝温度>AA浓度, 最佳反应条件为引发温度90℃, BPO 4.50×10-2mol/L, 接枝时间60 min, 接枝温度75℃, AA 1.4 mol/L, 此时纤维接枝率达13.12%; 经化学接枝改性后, 聚丙烯纤维表面亲水性和粗糙度增大, 与水泥基体的界面结合得到增强, 纤维掺量为0.05%(体积分数)时, 聚丙烯纤维增强水泥砂浆的抗开裂性能比增大了26.6%, 抗塑性收缩开裂性能显著增强。  相似文献   
3.
采用丙烯酸化学接枝法对聚丙烯纤维进行表面改性, 研究了改性聚丙烯纤维对发泡水泥塑性收缩开裂、 力学性能及泡孔结构的影响。结果表明, 改性聚丙烯纤维可改善发泡水泥的泡孔结构, 并降低其塑性收缩开裂、 细化其塑性收缩裂缝, 同时可提高其抗折、 抗压强度及弯曲韧性。纤维与水泥的质量比为0.7%时, 试样的泡孔结构明显改善, 塑性收缩开裂值下降了85.4%, 且缝宽小于1 mm的塑性收缩裂缝比例高达73.1%, 同时试样抗折及抗压强度分别增加48.8%和30.3%, 弯曲韧性显著增加。利用傅里叶变换红外光谱仪、 SEM、 光学显微镜对改性前后聚丙烯纤维表面基团及发泡水泥试样的断面微观形貌、 泡孔结构进行了分析, 探讨了改性聚丙烯纤维的作用机制。  相似文献   
4.
石蜡/膨胀珍珠岩复合相变储能材料的研究   总被引:1,自引:0,他引:1  
李启金  姜葱葱  李国忠 《砖瓦》2011,(10):15-17
以膨胀珍珠岩为吸附材料,石蜡为相变储能材料,制备了石蜡/膨胀珍珠岩复合相变储能材料;运用扩散-渗出圈法确定了膨胀珍珠岩的最佳吸附量为65%(质量分数,下同);采用DSC及SEM对最佳吸附量的石蜡/膨胀珍珠岩复合相变储能材料的相转变过程及微观结构进行研究。结果表明:膨胀珍珠岩的内部孔隙基本被石蜡完全填充,其自身成为了密实颗粒;复合相变储能材料的相变温度与石蜡的相变温度基本一致,其相变潜热与对应质量分数下石蜡的相变潜热相当。  相似文献   
5.
以42.5R普通硅酸盐水泥代替42.5快硬硫铝酸盐水泥制备密度约200 kg/m3的普硅发泡水泥,研究了Al2(SO4)3、Ca Cl2、三乙醇胺和Na2CO3对其的促凝效果,分析了相关作用机理,最终确定了最佳促凝剂及发泡水泥配合比。结果表明:以2.5%(水泥质量比,下同)Na2CO3+0.04%三乙醇胺组成的复合促凝剂为最适宜促凝剂;普硅发泡水泥的最佳配合比为水泥100 g、水灰比0.45、发泡剂6.5%、2.5%Na2CO3+0.04%三乙醇胺、稳泡剂3.0%、聚羧酸减水剂0.7%、硬脂酸钠2.0%,此时试样密度为204 kg/m3,28d抗折、抗压强度分别为0.22 MPa和0.5 1MPa,导热系数为0.057 W/(m·K),体积吸水率6.6%。  相似文献   
6.
将建筑垃圾加工成再生集料制备MU20强度等级建筑垃圾实心砖,研究建筑垃圾再生集料制备工艺、水泥料浆水灰比、再生集料与水泥质量比对建筑垃圾实心砖抗压强度的影响.结果表明:当再生集料与水泥质量比为5.5,水泥料浆水灰比为0.86,建筑垃圾活性激发剂掺量为0.25%(再生集料质量比)时,建筑垃圾实心砖的抗压强度为22.5MPa,满足国标GB/T21144-2007《混凝土实心砖》中MU20强度等级的要求.  相似文献   
7.
改性聚丙烯纤维对发泡水泥性能的影响   总被引:1,自引:0,他引:1  
采用丙烯酸化学接枝法对聚丙烯纤维进行表面改性,研究了改性聚丙烯纤维对发泡水泥塑性收缩开裂、力学性能及泡孔结构的影响.结果表明,改性聚丙烯纤维可改善发泡水泥的泡孔结构,并降低其塑性收缩开裂、细化其塑性收缩裂缝,同时可提高其抗折、抗压强度及弯曲韧性.纤维与水泥的质量比为0.7%时,试样的泡孔结构明显改善,塑性收缩开裂值下降了85.4%,且缝宽小于1 mm的塑性收缩裂缝比例高达73.1%,同时试样抗折及抗压强度分别增加48.8%和30.3%,弯曲韧性显著增加.利用傅里叶变换红外光谱仪、SEM、光学显微镜对改性前后聚丙烯纤维表面基团及发泡水泥试样的断面微观形貌、泡孔结构进行了分析,探讨了改性聚丙烯纤维的作用机制.  相似文献   
8.
以过氧化苯甲酰(BPO)为引发剂,采用二步化学接枝法对聚丙烯纤维进行接枝丙烯酸改性,利用正交分析法研究了引发温度、BPO浓度、接枝温度、接枝时间及丙烯酸(AA)浓度对纤维接枝率的影响,并评价了改性前后纤维与水泥基体的界面结合性能.结果表明:上述因素对纤维接枝率的影响大小为引发温度> BPO浓度>接枝时间>接枝温度>AA浓度,最佳反应条件为引发温度90℃,BPO 4.50×10-2 mol/L,接枝时间60 min,接枝温度75℃,AA 1.4 mol/L,此时纤维接枝率达13.12%;经化学接枝改性后,聚丙烯纤维表面亲水性和粗糙度增大,与水泥基体的界面结合得到增强,纤维掺量为0.05%(体积分数)时,聚丙烯纤维增强水泥砂浆的抗开裂性能比增大了26.6%,抗塑性收缩开裂性能显著增强.  相似文献   
9.
首先比较了物理发泡法和化学发泡法制备泡沫混凝土的优缺点.在此基础上,采用化学发泡与物理发泡相结合的新方法制备干密度约为250 kg/m3的泡沫混凝土,通过实验确定了新方法的最佳配比.在最佳配比下,新法克服了物理发泡时试样凝结时间过长和化学发泡时试样泡孔结构差的缺点,制备的试样凝结时间短,泡孔结构好,吸水率低,力学性能好  相似文献   
10.
首先比较了物理发泡法和化学发泡法制备泡沫混凝土的优缺点。在此基础上,采用化学发泡与物理发泡相结合的新方法制备干密度约为250kg/m3的泡沫混凝土,通过实验确定了新方法的最佳配比。在最佳配比下,新法克服了物理发泡时试样凝结时间过长和化学发泡时试样泡孔结构差的缺点,制备的试样凝结时间短,泡孔结构好,吸水率低,力学性能好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号