首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1619篇
  免费   273篇
  国内免费   299篇
电工技术   42篇
综合类   186篇
化学工业   322篇
金属工艺   330篇
机械仪表   165篇
建筑科学   49篇
矿业工程   46篇
能源动力   35篇
轻工业   55篇
水利工程   9篇
石油天然气   95篇
武器工业   99篇
无线电   73篇
一般工业技术   371篇
冶金工业   37篇
原子能技术   78篇
自动化技术   199篇
  2024年   11篇
  2023年   162篇
  2022年   143篇
  2021年   129篇
  2020年   102篇
  2019年   130篇
  2018年   76篇
  2017年   79篇
  2016年   59篇
  2015年   69篇
  2014年   141篇
  2013年   98篇
  2012年   130篇
  2011年   118篇
  2010年   76篇
  2009年   85篇
  2008年   78篇
  2007年   96篇
  2006年   92篇
  2005年   70篇
  2004年   56篇
  2003年   39篇
  2002年   28篇
  2001年   32篇
  2000年   20篇
  1999年   10篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1979年   1篇
  1959年   1篇
排序方式: 共有2191条查询结果,搜索用时 15 毫秒
1.
2.
 沥青中大量的沥青质分子均含杂原子,通过计算化学方法,可以分析杂原子对沥青质二聚体结构及分子间相互作用的影响,并探究其影响机理。密度泛函理论计算结果表明,杂原子的存在使分子的静电势分布差别明显。对于稠环结构相似的沥青质分子,共轭硫原子使得分子的相互作用减小,含硫沥青质较远的质心距离和硫原子相对较弱的负电势使分子的取向和质心距分布更加随机。共轭氮原子作为强负电中心,强排斥增大分子取向偏离最低能量构型的能垒,从而使沥青质二聚体的构型取向更加趋于固定。同时分子动力学结果显示,含硫沥青质对温度敏感,温度升高更严重地加剧分子排列无序;而含氮沥青质在较高温度下依旧保持相对的有序排列。  相似文献   
3.
为研究高密度聚乙烯/有机改性蒙脱石(PE?HD/OMMT)复合材料中改性剂及PE?HD对蒙脱石(MMT)插层和剥离的影响,采用分子动力学方法模拟了OMMT中不同负载量的十八烷基三甲基氯化铵阳离子(OTAC+)在MMT中的排列方式以及对MMT插层的影响。此外,搭建了PE?HD/OMMT复合材料模型,编写MS Perl脚本提取了OTAC+与MMT和PE?HD之间的相互作用能来研究双螺杆挤出机机筒温度在463 K下对MMT剥离的影响。模拟结果表明,随着OTAC+负载量的提高,其在MMT片层中依次呈现为单层分布、双层分布和假三层分布;同时,OTAC+负载量的增加致使MMT的层间距有所增加,但MMT并未发生剥离;模拟时间在90~95 ps内时,PE?HD/OMMT复合材料模型中顶层和底层MMT间的相互作用能由-24.53 kcal/mol转变为3.54 kcal/mol,说明MMT发生了剥离,此时MMT的层间距为91 ?。  相似文献   
4.
运用分子动力学方法构建生物再生剂?沥青模型,通过微观模拟探究再生剂?沥青的融合扩散行为. 首先采用FTIR试验结合SARA模型确定老化前后的12种沥青分子结构,选用动物废弃物生物再生剂的主要成分类固醇和羧酸,建立沥青?再生剂的扩散体系分子动力学模型. 采用密度、相容性指标验证分子动力学模型的可靠性,分析不同温度、老化状态下生物再生剂在基质沥青与老化沥青中的融合扩散行为. 结果表明:生物再生剂在老化沥青中的扩散系数高于在基质沥青中的扩散系数;在相同温度下类固醇的扩散性能优于羧酸;两种生物再生剂的扩散系数随着温度升高而升高,高温条件下体系动能更大,使体系分子更容易摆脱分子力的约束.  相似文献   
5.
利用分子动力学模拟研究了WC–Co硬质合金在不同条件下的摩擦过程,分析了晶粒尺寸、摩擦载荷和滑动速率等因素对硬质合金摩擦磨损行为的影响,从原子尺度揭示了硬质合金发生摩擦磨损的微观机制。结果表明,随晶粒尺寸增大,相比于晶粒转动,Co相和WC中的位错滑移逐渐在摩擦引起的塑性变形机制中起主导作用。摩擦载荷增大会导致易变形的Co粘结相被挤出表面而首先去除,通过减小晶粒尺寸可以抑制Co相的挤出–磨损机制,进而提高硬质合金的抗滑动磨损性能。滑动速率升高会降低磨损速率,主要原因是在高速滑动过程中,亚表层各相中位错的形核扩展缺乏持续的驱动应力,位错密度较低,WC不易发生断裂,Co相被挤出表面造成的磨损程度明显减轻。  相似文献   
6.
Ta、Mo和W具有良好的高温性能,是空间堆和聚变堆的重要结构材料,但其固有的本征脆性是一个突出的问题,而材料的力学性能往往与材料中缺陷的行为有关。本文利用分子动力学对上述3种金属进行了纳米压痕模拟研究,探究其力学性能和缺陷行为的变化规律,分析不同晶向下3种难熔金属的力学性能以及金属中独立位错环的形成机制。研究发现,部分纳米压痕模拟下难熔金属中形成了独立的位错环。[111]晶向下难熔金属中位错环的形成机制可分为两种:在Ta和Mo中,连接刃位错两端的螺位错之间相互剪切形成了独立位错环;在W中,螺位错段先从刃位错端分离后再闭合形成独立位错环。而在[100]晶向下,Mo以与[111]晶向下相同的机制形成了独立位错环,W和Ta中则没有位错环形成。  相似文献   
7.
利用分子动力学模拟的方法探究了乙酸乙酯与二溴甲烷组成的二元溶剂在298.15 K,1 atm下对ε-CL-20晶体形貌的影响。通过修正附着能模型(MAE)模型探究了溶剂-晶体相互作用,用分子动力学模拟预测了不同组成的乙酸乙酯/二溴甲烷混合溶剂中ε-CL-20的晶体形貌并与实验获得ε-CL-20的晶体形貌进行了对比。结果表明,实验获得的晶体形貌与模拟结果一致,且晶面粗糙度越大,溶剂-晶体相互作用越强。此外,还通过均方位移(MSD)分析了溶剂分子在不同晶面的扩散系数,探究了溶剂扩散速率对不同晶面的影响,并利用径向分布函数(RDF)分析了溶剂分子与晶体分子间相互作用的组成。  相似文献   
8.
为了从纳米尺度了解表面结构和润湿性对池沸腾液体与固体壁面的传热性能,本文采用分子动力学方法研究了超亲水至超疏水不同润湿性的液体氩在光滑表面和含凹、凸半球纳米结构表面的沸腾传热过程,分析了三种表面上液氩在受热过程的形态、温度、热流密度等相关参数的变化情况。结果表明,液氩层沸腾过程大致可分为液氩层吸附于固体表面和液氩层从壁面脱离两个加热阶段,当液氩层吸附于固体表面时,温度升高、热流密度及气态氩原子产生速度均大于液氩层脱离壁面时的情况,在这两个阶段亲水表面上氩原子温度变化有明显的拐点,而疏水表面在两个阶段加热过程相差不大。亲水表面上的微结构能吸附更多液氩原子,促进了气泡产生及加速温度、热流密度的变化,而在疏水及超疏水微结构表面,微纳结构与液氩间的气膜层促进了气泡产生,计算结果为池沸腾传热及微结构选择提供了理论依据。  相似文献   
9.
乙型肝炎核心病毒样颗粒HBc-VLPs (Hepatitis B Core Antigen Virus-like Particles)因稳定性好且易于改造,被作为疫苗载体广泛使用,但影响VLPs稳定性的控制机制尚不清楚。采用分子动力学模拟研究了HBc-VLP中蛋白亚基二聚体、五聚体及六聚体复合物的稳定性,计算了体系中蛋白亚基的介电常数,避免了以往研究中直接使用经验参数的做法;通过分子力学-泊松玻尔兹曼溶剂可及表面积(MM-PBSA)方法计算亚基分子间的结合自由能,表明范德华作用能和非极性溶剂化作用能有利于促进相邻蛋白亚基间的亲和作用;根据计算结果可推测HBc-VLPs中六聚体比五聚体的稳定性更强,而两个六聚体之间或五聚体同六聚体之间形成的二聚体有助于进一步形成结构更加稳定的HBc-VLPs。该结论有助于生物工程中对HBc-VLPs的蛋白质改造,从而提高HBc-VLPs为载体的候选疫苗的稳定性。  相似文献   
10.
使用马来酸酐(MA)、乙酸乙烯酯(VA)、乙烯基磺酸钠(VS)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)合成了一种四元共聚物阻垢剂MA-VA-VS-AMPS,并探究其在高Ca2+质量浓度和高矿化度环境中的阻垢机理。采用FT-IR分析阻垢剂结构,研究了阻垢剂质量浓度、Ca2+质量浓度、溶液温度和pH值等因素在静态条件下对阻垢剂阻垢性能的影响;利用动态流动测试方法评价阻垢剂在动态条件下的阻垢率;采用Materials studio(MS)中分子动力学模拟方法计算阻垢剂与CaCO3之间的结合能;采用扫描电镜(SEM)和X-射线衍射(XRD)仪分析CaCO3晶体的形貌和晶型。结果表明:在静态测试条件下,MA-VA-VS-AMPS的阻垢率是99.3%;在动态测试条件下,MA-VA-VS-AMPS的阻垢率为96.8%,且阻垢剂使CaCO3发生变形, Ca2+和阻垢剂中的O之间形成了化学键,阻垢剂与CaCO3发生吸附作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号