首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7050篇
  免费   254篇
  国内免费   142篇
电工技术   221篇
综合类   218篇
化学工业   1042篇
金属工艺   180篇
机械仪表   147篇
建筑科学   2775篇
矿业工程   64篇
能源动力   528篇
轻工业   130篇
水利工程   41篇
石油天然气   31篇
武器工业   11篇
无线电   326篇
一般工业技术   493篇
冶金工业   174篇
原子能技术   74篇
自动化技术   991篇
  2024年   3篇
  2023年   48篇
  2022年   115篇
  2021年   120篇
  2020年   132篇
  2019年   103篇
  2018年   106篇
  2017年   122篇
  2016年   264篇
  2015年   241篇
  2014年   418篇
  2013年   502篇
  2012年   391篇
  2011年   693篇
  2010年   466篇
  2009年   543篇
  2008年   478篇
  2007年   483篇
  2006年   427篇
  2005年   299篇
  2004年   243篇
  2003年   260篇
  2002年   162篇
  2001年   103篇
  2000年   98篇
  1999年   143篇
  1998年   106篇
  1997年   71篇
  1996年   48篇
  1995年   34篇
  1994年   46篇
  1993年   32篇
  1992年   21篇
  1991年   28篇
  1990年   24篇
  1989年   10篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   12篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1980年   4篇
  1974年   1篇
  1973年   1篇
  1965年   1篇
排序方式: 共有7446条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(20):28557-28565
To reduce the energy consumption of cooling in the hot summer days, searching for novel NIR shielding materials for buildings is of great value. In this report, monodispersed F doped TiO2 nanocrystals with an average size of 8.6 nm were synthesized as novel solar shielding materials for energy-saving windows. All the products adopted an anatase TiO2 structure. After doping of F ions, the morphology of TiO2 was transformed from an irregular shape to a pseudospherical shape. The Raman shift and XPS depth analysis confirmed the successful doping of F ions into the lattice oxygen sites in the TiO2 structure. The introduction of F ions generated free electrons and bulk Ti3+ in TiO2 crystals, which activated a localized surface plasmon resonance (LSPR) absorption in the NIR region. Correspondingly, the NIR shielding performance of the TiO2 films improved with increasing F doping amounts. The NIR shielding value of the films increased from 1.3% to 43.2% when the molar ratio of F to Ti increased from 0 to 0.3. The reason can be attributed to the enhanced NIR absorption induced by the increased electron concentration after doping of fluorine ions. The F–TiO2 films showed superior visible transmittance (90.1–96.7%). Moreover, the F–TiO2 films lowered the indoor temperature of the heat box by 5.3 °C in the thermal tests. Overall, the prepared F–TiO2 nanocrystals show a great potential to be used for energy-saving windows.  相似文献   
2.
The rapid increase in energy consumption has severely rehabilitated human life urging to develop reliable and environmental friendly energy storage devices. Target oriented, systematic approach has been adopted to synthesis La doped CeO2 nanostructures with percentage as LaxCe1-xO2 (X = 0,1,3,5,7) for potential super capacitors applications. Morphological doping impact on H2 production, electrochemical and optical properties are thoroughly investigated. XRD studies revealed the crystalline phase purity and attained approximately 35 nm average crystallite size. The SEM images exposed that primary morphology nano-particles has been tuned into nanorods by increasing the La concentration in CeO2 with size range 40~60 nm. CV graphs depicted that the prepared electrodes obey the pseudo capacitive faradaic reactions behavior in nature. Maximum capacitance (925 F g-1) has been achieved by La0·05Ce0·95O2 which is better than numerous reported materials. The La0·05Ce0·95O2 also exhibited excellent GCD stability with 87.8% retention exhibiting it suitability for supercapacitor applications. Furthermore, the La0·05Ce0·95O2 showed the significantly higher H2 (9 μmol h?1g?1) production rate as compared to undoped CeO2 and La0·01Ce0·99O2, La0·03Ce0·97O2 samples. This higher production is attributed to the recombination rate and have strong substantial correlation with optical characteristics.  相似文献   
3.
《Ceramics International》2022,48(14):19513-19526
Comprehensive control of processing techniques is primordial when fine-tuning the morphological features of titanium dioxide nanotube arrays (TNTs). This systematic review and meta-analysis compiled articles published from 2007 to date on the synthesis and growth mechanism of nanotubes fabricated via electrochemical anodization and evaluated the potential relationships between anodizing conditions and the resulting structures. Studies were gathered from the Science Direct online database, screened according to predefined criteria, and evaluated for their eligibility. Ninety-nine studies were assessed in the meta-analysis, 87 of them on tube length, 80 on tube diameter, and 33 on wall thickness. Multiple linear regression was performed to test if anodization parameters significantly predicted the resulting morphology of TiO2 nanotubular structures. Overall regression for the three responses was statistically significant (length: R2 = 0.487, p < 0.001; diameter: R2 = 0.899, p < 0.001; wall thickness: R2 = 0.792, p < 0.001). Applied potential was one of the main effects predicting all three responses (p < 0.001 in every model). Other important main predictors were anodizing time for tube length (p < 0.001), water percentage for tube diameter (p < 0.001) and ammonium fluoride (NH4F) concentration for wall thickness (p < 0.001).  相似文献   
4.
Ordered arrays of TiO2 nanotubes with smooth and rippled morphologies were prepared by one-step titanium oxidation in NH4F and ethylene glycol solution. The samples were then decorated with ZnS using a microwave-assisted solvothermal method. The experiments under constant or pulsed applied voltage resulted in smooth and rippled TiO2material morphologies, respectively. Field emission scanning electron microscopy, incident photon-to-current efficiency, linear sweep voltammetry and electrochemical impedance spectroscopy were used to investigate the structure and morphology of the TiO2 nanotubes, along with their photoelectrochemical activity in the water splitting reaction. An envelope function was proposed to correlate the anisotropic morphologies and broad distribution of mobility due to the random nature of charge carrier transport. The smooth and rippled morphologies were evaluated using the transmission line model. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level are conducted to obtain a better understanding of optical properties of TiO2.  相似文献   
5.
《Ceramics International》2020,46(4):4610-4618
Series of SrNbxYxFe12-2xO19 (0.00 ≤ x ≤ 0.05) hexaferrites (HFs) were fabricated via citrate sol-gel approach. Structural and magneto-optical properties of ensembles were investigated in detail. The structural and morphological analyses revealed the formation of M-type Sr hexaferrite nanoparticles. Diffuse reflectance data were registered to estimate the direct optical energy band gaps (Eg) in a range of 1.77 eV-1.87 eV. Room temperature (RT, 300 K) and low temperature (10 K) magnetic hysteresis curves were recorded by enforcing applied dc magnetic field up to ±70 kOe. Magnetic parameters were significantly tuned due to coordination of Nb3+ and Y3+ rare earth ions. Specified magnetic data reveal the strong ferromagnetic characteristics of pristine SrFe12O19 and co-doped HFs with Nb3+ and Y3+ ions at both temperatures. RT squareness ratio (SQR) has an exception only for pristine sample as 0.506, which is in the margin of theoretical limit assigning the single-domain nature with uniaxial anisotropy. However, all co-doped samples have SQR = 0.288–0.485 values that are smaller than theoretical limit of 0.50, implying multi-domain nature at RT and at 10 K. Co-doped ions cause lowering in super-exchange interactions between different sites and resulting the decrements of intrinsic magneto-crystalline anisotropy and coercivity fields. The specified magnetic characteristics make our fabricated SrNbxYxFe12-2xO19 (0.00 ≤ x ≤ 0.05) HFs good candidates as permanent magnets applications and high-density recording media.  相似文献   
6.
《Ceramics International》2020,46(8):11499-11507
In this study, NiCo2O4 with different morphologies were fabricated using carriers by homogeneous coprecipitation combined with a sintering method. The phase and microstructure were characterized by XRD, SEM, EDS, TEM and BET, and the catalytic performances were investigated by NaBH4 hydrolysis experiments. These studies revealed that the deposition morphology of NiCo2O4 can be adjusted by using different kinds of carrier templates, and the supported NiCo2O4 samples presented the pine-needle-like, network-like, ball-cactus-like and dandelion-like morphologies respectively. The optimal catalytic activity, durability and stability make the network-like NiCo2O4 an appropriate catalyst for hydrogen generation of NaBH4 hydrolysis. It was found that the network-like NiCo2O4 is the most reusable and durable catalyst for ten consecutive cycles and 100% hydrogen generation conversion rate without obvious decrease among these morphologies.  相似文献   
7.
《Ceramics International》2020,46(5):5773-5778
In this research work, the effects of silicon carbide (SiC) as the most important reinforcement phase on the densification percentage and mechanical characteristics of zirconium diboride (ZrB2)-matrix composites were studied. In this way, a monolithic ZrB2 ceramic (as the baseline) and three ZrB2 matrix specimens each of which contains 25 vol% SiC as reinforcement in various morphologies (SiC particulates, SiC whiskers, and a mixture of SiC particulates/SiC whiskers), have been processed through spark plasma sintering (SPS) technology. The sintering parameters were 1900 °C as sintering temperature, 7 min as the dwell time, and 40 MPa as external pressure in vacuum conditions. After spark plasma sintering, a relative density of ~96% was obtained (using the Archimedes principles and mixture rule for evaluation of relative density) for the unreinforced ZrB2 specimen, but the porosity of composites containing SiC approached zero. Also, the assessment of sintered materials mechanical properties has shown that the existence of silicon carbide in ZrB2 matrix ceramics results in fracture toughness and microhardness improvement, compared to those measured for the monolithic one. The simultaneous addition of silicon carbide particulates (SiCp) and whiskers (SiCw) showed a synergistic effect on the enhancement of mechanical performance of ZrB2-based composites.  相似文献   
8.
Exploring efficient and durable non-precious metal catalysts for oxygen reduction reaction (ORR) has long been pursued in the field of metal-air batteries, fuel cells, and solar cells. Rational design and controllable synthesis of desirable catalysts are still a great challenge. In this work, a novel approach is developed to tune the morphologies and structures of Fe–N–C catalysts in combination with the dual nitrogen-containing carbon precursors and the gas-foaming agent. The tailored Fe–N1/N2–C-A catalyst presents gauze-like porous nanosheets with uniformly dispersed tiny nanoparticles. Such architectures exhibit abundant Fe-Nx active sites and high-exposure surfaces. The Fe–N1/N2–C-A catalyst shows extremely high half-wave potential (E1/2, 0.916 V vs. RHE) and large limiting current density (6.3 mA cm−2), far beyond 20 wt% Pt/C catalyst for ORR. This work provides a facile morphological and structural regulation to increase the number and exposure of Fe-Nx active sites.  相似文献   
9.
Lack of constraint-free crane path planning is one of the critical concerns in the dynamic on-site assembly process of prefabrication housing production (PHP). For decades, researchers and practitioners have endeavored to improve both the efficiency and safety of crane path planning from either static environment or re-planning the path when colliding with constraints or periodically updating the path in the dynamic environment. However, there is a lack of approach related to the in-depth exploration of the nature of dynamic constraints so as to assist the crane operators in making adaptive path re-planning decisions by categorizing and prioritizing constraints. To address this issue, this study develops the smart work packaging (SWP)-enabled constraints optimization service. This service embraces the core characteristics of SWP, including adaptivity, sociability, and autonomy to achieve autonomous initial path planning, networked constraints classification, and adaptive decisions on path re-planning. This service is simulated and verified in the BIM environment, and it is found that SWP-enabled constraints optimization service can generate the constraint-free path when it is necessary.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号