首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7859篇
  免费   282篇
  国内免费   156篇
电工技术   571篇
技术理论   1篇
综合类   281篇
化学工业   717篇
金属工艺   233篇
机械仪表   381篇
建筑科学   1336篇
矿业工程   221篇
能源动力   1366篇
轻工业   324篇
水利工程   189篇
石油天然气   165篇
武器工业   34篇
无线电   447篇
一般工业技术   637篇
冶金工业   234篇
原子能技术   61篇
自动化技术   1099篇
  2024年   5篇
  2023年   80篇
  2022年   176篇
  2021年   175篇
  2020年   228篇
  2019年   158篇
  2018年   141篇
  2017年   218篇
  2016年   366篇
  2015年   358篇
  2014年   520篇
  2013年   443篇
  2012年   518篇
  2011年   716篇
  2010年   548篇
  2009年   465篇
  2008年   396篇
  2007年   437篇
  2006年   340篇
  2005年   334篇
  2004年   290篇
  2003年   292篇
  2002年   176篇
  2001年   139篇
  2000年   149篇
  1999年   124篇
  1998年   116篇
  1997年   63篇
  1996年   76篇
  1995年   58篇
  1994年   35篇
  1993年   25篇
  1992年   20篇
  1991年   13篇
  1990年   11篇
  1989年   19篇
  1988年   16篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   10篇
  1982年   3篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
排序方式: 共有8297条查询结果,搜索用时 15 毫秒
1.
新建的龙岩至厦门单线铁路象山隧道断面比较小,使用液压凿岩台车开挖,斜孔掏槽方案受到很大限制。本文介绍了使用液压凿岩台车钻爆开挖象山隧道,选择斜孔掏槽方案实现快速开挖,为类似的隧道工程施工提供经验。  相似文献   
2.
We propose a self-sustaining power supply system consisting of a “Hybrid Energy Storage System (HESS)” and renewable energy sources to ensure a stable supply of high-quality power in remote islands. The configuration of the self-sustaining power supply system that can utilize renewable energy sources effectively on remote islands where the installation area is limited is investigated. It is found that it is important to select renewable energy sources whose output power curve is close to the load curve to improve the efficiency of the system. The operation methods that can increase the cost-effectiveness of the self-sustaining power supply system are also investigated. It is clarified that it is important for increasing the cost effectiveness of the self-sustaining power supply system to operate the HESS with a smaller capacity of its components by setting upper limits on the output power of the renewable energy sources and cutting the infrequent generated power.  相似文献   
3.
Hydrogen generation from renewable energy resources is considered as a suitable solution to solve the problems related to the energy sector and the reduction of greenhouse gases. The aim of this study is to provide an integrated framework for identifying suitable areas for the construction of wind farms to produce hydrogen. For this purpose, a combined method of Geographic Information System (GIS) and multi-criteria decision making (MCDM) has been used to locate the power plant in Yazd province. The GIS method in the present study consisted of two parts: constraints and criteria. The constraint section included areas that were unsuitable for the construction of wind farms to produce power and hydrogen. In the present study, various aspects such as physical, economic and environmental had been considered as constraints. In the criteria section, eight different criteria from technical aspects (including average wind speed, hydrogen production potential, land slope) and economic aspects (including distance to electricity grid, distance to urban areas, distance to road, distance to railway and distance to centers of High hydrogen consumption) had been investigated. The MCDM tool had been used to weigh the criteria and identify suitable areas. Analytic Hierarchy Process (AHP) technique was used for weighting the criteria. The results of AHP weighting method showed that economic criteria had the highest importance with a value of 0.681. The most significant sub-criterion was the distance to urban areas and the least significant sub-criterion was the distance to power transmission lines. The results of GIS-MCDM analysis had shown that the most proper areas were in the southern and central sectors of Yazd province. In addition, the feasibility of hydrogen production from wind energy had shown that this province had the capacity to generate hydrogen at the rate of 53.6–128.6 tons per year.  相似文献   
4.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
5.
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e. allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens. The present study evaluates the feasibility of microbially induced calcium carbonate precipitation (MICP) technique to mitigate wind-induced erosion of calcareous desert sand (Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36 °C to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina (S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing (in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure (including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope (SEM), and energy-dispersive X-ray spectroscope (EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in 15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust, bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.  相似文献   
6.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   
7.
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently, which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure (EWP). By means of a three-dimensional (3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system (TDS) widely used in China and its optimized drainage system (ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice, including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 kPa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.  相似文献   
8.
Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact modes are classified into dense contact, local non-contact, and loose contact. Subsequently, the corresponding mechanical model for each contact mode is developed according to its mechanical characteristics using the complex variable method. In the proposed mechanical model, a special algorithm is introduced to detect whether the local non-contact zone is re-contacted. Besides, a novel conformal mapping method is also proposed to accurately calculate the mechanical response of the concrete lining. Finally, the accuracy of the proposed method is verified by comparing it with the finite element method (FEM). Several parameter investigations are conducted to analyze the effects of different contact modes on the rock–lining interaction. The results show that: (i) the height of the local non-contact area does not have a significant effect on the contact stress distribution if no re-contact occurs; (ii) backfill grouting can reduce the local stress concentration caused by poor contact modes; and (iii) reducing the friction coefficient of the interface can lead to a more uniform distribution of internal forces in the concrete lining.  相似文献   
9.
Ambient condition, especially the wind condition, is an important factor to determine the behavior of hydrogen diffusion during hydrogen release. However, only few studies aim at the quantitative study of the hydrogen diffusion in a wind-exist condition. And very little researches aiming at the variable wind condition have been done. In this paper, the hydrogen diffusion in different wind condition which including the constant wind velocity and the variable wind velocity is investigated numerically. When considering the variable wind velocity, the UDF (user defined function) is compiled. Characteristics of the FGC (flammable gas cloud) and the HMF (hydrogen mass fraction) are analyzed in different wind condition and comparisons are made with the no-wind condition. Results indicate that the constant wind velocity and the variable wind velocity have totally different effect for the determination of hydrogen diffusion. Comparisons between the constant wind velocity and the variable wind velocity indicate that the variable wind velocity may cause a more dangerous situation since there has a larger FGC volume. More importantly, the wind condition has a non-negligible effect when considering the HMF along the radial direction. As the wind velocity increases, the distribution of the HMF along the radial direction is not Gaussian anymore when the distance between the release hole and the observation line exceeds to a critical value. This work can be a supplement of the research on the hydrogen release and diffusion and a valuable reference for the researchers.  相似文献   
10.
With the increasing proportion of renewable energy (mainly wind power and photovoltaic) connected to the grid, the fluctuation of renewable energy power brings great challenges to the safe and reliable operation of power grid. As a clean, low-carbon secondary energy, hydrogen energy is applied in renewable energy (mainly wind power and photovoltaic) grid-connected power smoothing, which opens up a new way of coupling hydrogen storage energy with renewable energy. This paper focuses on the optimization of capacity of electrolyzers and fuel cells and the analysis of system economy in the process of power output smoothing of wind/photovoltaic coupled hydrogen energy grid-connected system. Based on the complementary characteristics of particle swarm optimization (PSO) and chemical reaction optimization algorithm (CROA), a particle swarm optimization-chemical reaction optimization algorithm (PSO-CROA) are proposed. Aiming at maximizing system profit, the capacity of electrolyzers and fuel cells are constrained by wind power fluctuation, and considering environmental benefits, government subsidies and time value of funds, the objective function and its constraints are established. According to the simulation analysis, by comparing the calculated results with PSO and CROA, it shows that PSO-CROA effectively evaluates the economy of the system, and optimizes the optimal capacity of the electrolyzers and fuel cells. The conclusion of this paper is of great significance for the application of hydrogen energy storage in the evaluation of power smoothness and economy of renewable energy grid connection and the calculation of economic allocation of hydrogen energy storage capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号