首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19692篇
  免费   1660篇
  国内免费   863篇
电工技术   342篇
综合类   477篇
化学工业   6667篇
金属工艺   1486篇
机械仪表   916篇
建筑科学   162篇
矿业工程   98篇
能源动力   900篇
轻工业   2361篇
水利工程   15篇
石油天然气   342篇
武器工业   47篇
无线电   2845篇
一般工业技术   4340篇
冶金工业   369篇
原子能技术   522篇
自动化技术   326篇
  2024年   31篇
  2023年   384篇
  2022年   398篇
  2021年   666篇
  2020年   648篇
  2019年   668篇
  2018年   623篇
  2017年   750篇
  2016年   768篇
  2015年   698篇
  2014年   1070篇
  2013年   1389篇
  2012年   1271篇
  2011年   1759篇
  2010年   1136篇
  2009年   1239篇
  2008年   1128篇
  2007年   1070篇
  2006年   975篇
  2005年   741篇
  2004年   720篇
  2003年   671篇
  2002年   562篇
  2001年   423篇
  2000年   311篇
  1999年   264篇
  1998年   247篇
  1997年   197篇
  1996年   222篇
  1995年   181篇
  1994年   192篇
  1993年   134篇
  1992年   148篇
  1991年   105篇
  1990年   86篇
  1989年   65篇
  1988年   46篇
  1987年   36篇
  1986年   22篇
  1985年   41篇
  1984年   39篇
  1983年   18篇
  1982年   28篇
  1981年   9篇
  1980年   9篇
  1979年   3篇
  1978年   4篇
  1976年   8篇
  1975年   5篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
2.
To prevent the adulteration of agricultural resources and provide a solution to enhance the green coffee bean supply chain, authentication using the near-infrared spectroscopy (NIRS) technique was investigated. Partial least square with discrimination analysis (PLS-DA) models combined with various preprocessing methods were built from NIR spectra of 153 Vietnamese green coffee samples. The model combined with the standard normal variate and the first order of derivative yielded excellent performance in predicting coffee species with the error cross-validation of 0.0261. PLS-DA model of mean centre and first-order derivative spectra also yielded good performance in verifying geographical indication of green coffee with the error of 0.0656. By contrast, the predicting abilities of post-harvest methods were poor. The overall results showed a high potential of the NIRS in online authentication practices.  相似文献   
3.
4.
《Ceramics International》2022,48(2):1765-1770
Perovskite lattice was tailored by introducing site vacancies and mixed anion composition, to produce Sr0.83Li0.17Ta0.83O1.88N0.74 (Li02N). Further, Li02N was converted to a defect oxide Sr0.83Li0.17Ta0.83O3 (Li02O) by applying an optimized treatment: heating in air at 1173 K for 2 h. According to the neutron Rietveld refinement, Li02N and Li02O are tetragonal and orthorhombic, respectively, where the lattice volume of Li02O is significantly smaller than that of Li02N. The ionic conductivity (σion) of Li02N and Li02O was evaluated by the ac impedance spectroscopy and the equivalent circuit analysis. Both Li02N (σion = 10?5.5 S/cm at 671 K) and Li02O (σion = 10?6.2 S/cm at 667 K) exhibited an Arrhenius behavior of ionic conductivity with activation energies of 0.87 eV and 0.75 eV, respectively. It is interpreted that the nitride component enhances the ionic conduction of Li02N, while the vacancy of the anion lattice makes an opposite effect.  相似文献   
5.
Among various carbon materials, diamond stands out due to excellent physical and chemical properties. In this work, we designed Dia@SiO2@Ag composites combining diamond micropowder and Ag nanoparticles by a simple chemical method and obtained stable substrate for surface enhanced Raman scattering (SERS) owing to its high surface-to-volume ratio, low density, as well as close bond between diamond and Ag. As-prepared Dia@SiO2@Ag presented high activity to detect crystal violet and rhodamine 6G molecules, which was demonstrated by significantly enhanced SERS spectra and high enhancement factor values (108-109). Moreover, Dia@SiO2@Ag also showed desired sensitivity, which was investigated by detection limit. Therefore, our study provided more theoretical support and broadened the functional applications of diamond, particularly in Raman detection.  相似文献   
6.
Recent progress in the de novo design of self-assembling peptides has enabled the construction of peptide-based viral capsids. Previously, we demonstrated that 24-mer β-annulus peptides from tomato bushy stunt virus spontaneously self-assemble into an artificial viral capsid. Here we propose to use the artificial viral capsid through the self-assembly of β-annulus peptide as a simple model to analyze the effect of molecular crowding environment on the formation process of viral capsid. Artificial viral capsids formed by co-assembly of fluorescent-labelled and unmodified β-annulus peptides in dilute aqueous solutions and under molecular crowding conditions were analyzed using fluorescence correlation spectroscopy (FCS). The apparent particle size and the dissociation constant (Kd) of the assemblies decreased with increasing concentration of the molecular crowding agent, i.e., polyethylene glycol (PEG). This is the first successful in situ analysis of self-assembling process of artificial viral capsid under molecular crowding conditions.  相似文献   
7.
8.
Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome–lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1). HMEC-1 cells after CQ exposure were measured using a combined methodology based on label-free Raman and fluorescence imaging. Raman spectroscopy was applied to characterize subtle chemical changes in lipid contents and their distribution in the cells, while the fluorescence staining (LipidTox, LysoTracker and LC3) was used as a reference method. The results showed that CQ was not toxic to endothelial cells and did not result in the endothelial inflammation at concentrations of 1–30 µM. Notwithstanding, it yielded an increased intensity of LipidTox, LysoTracker, and LC3 staining, suggesting changes in the content of neutral lipids, lysosomotropism, and autophagy inhibition, respectively. The CQ-induced endothelial response was associated with lipid accumulation and was characterized by Raman spectroscopy. CQ-induced autophagosome accumulation in the endothelium is featured by a pronounced alteration in the lipid profile, but not in the endothelial inflammation. Raman-based assessment of CQ-induced biochemical changes offers a better understanding of the autophagy mechanism in the endothelial cells.  相似文献   
9.
In this work, Gd2Ge2O7 polymorphs were obtained by solid-state reactions at 1100–1300 °C. Structural and vibrational features were investigated by X-ray diffraction and Raman spectroscopy. For the triclinic (space group P1) polymorph, all the predicted phonons were discerned in perfect agreement with the group theory calculations, while for the tetragonal polymorph (space group P41212), 53 bands of the 81 predicted modes could be identified and characterized. The Gd3+ 4f-4f electronic transitions were investigated by diffuse reflectance spectroscopy in the range 200–340 nm. By applying the Kubelka-Munk function, it was possible to determine the bandgap values for all ceramics studied. The tetragonal polymorph exhibited higher bandgap values (5.88 eV) than the triclinic one (5.59 eV), which are both more energetic than other pyrochlore polymorphs reported in the literature. The results indicate that the presence of polymorphism in Gd2Ge2O7 ceramics can be used to produce tailor-made materials since their crystal structures have a strong influence on their optical properties. Consequently, these properties could be used to tuning the optical properties of Gd-containing materials to sensitize and transfer energy to other luminescent lanthanide ions, aiming for innovative applications.  相似文献   
10.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号