首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14441篇
  免费   1208篇
  国内免费   775篇
电工技术   501篇
技术理论   1篇
综合类   543篇
化学工业   1205篇
金属工艺   544篇
机械仪表   1560篇
建筑科学   2502篇
矿业工程   372篇
能源动力   913篇
轻工业   313篇
水利工程   83篇
石油天然气   201篇
武器工业   170篇
无线电   1000篇
一般工业技术   1014篇
冶金工业   608篇
原子能技术   177篇
自动化技术   4717篇
  2024年   7篇
  2023年   160篇
  2022年   230篇
  2021年   306篇
  2020年   303篇
  2019年   248篇
  2018年   313篇
  2017年   390篇
  2016年   542篇
  2015年   625篇
  2014年   979篇
  2013年   1047篇
  2012年   995篇
  2011年   1288篇
  2010年   868篇
  2009年   954篇
  2008年   912篇
  2007年   1000篇
  2006年   906篇
  2005年   772篇
  2004年   569篇
  2003年   535篇
  2002年   414篇
  2001年   279篇
  2000年   251篇
  1999年   268篇
  1998年   201篇
  1997年   175篇
  1996年   144篇
  1995年   115篇
  1994年   141篇
  1993年   80篇
  1992年   84篇
  1991年   63篇
  1990年   57篇
  1989年   42篇
  1988年   47篇
  1987年   14篇
  1986年   17篇
  1985年   16篇
  1984年   11篇
  1983年   11篇
  1982年   6篇
  1981年   10篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1975年   5篇
  1974年   2篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
Efficient electricity price forecasting plays a significant role in our society. In this paper, a novel influencer-defaulter mutation (IDM) mutation operator has been proposed. The IDM operator has been combined with six well-known optimization algorithms to create mutated optimization algorithms whose performance has been tested on twenty-four standard benchmark functions. Further, the artificial neural network is integrated with mutated optimization algorithms to solve the electricity price prediction problem. The policymakers can identify appropriate variables based on the predicted prices to help future market planning. The statistical results prove the efficacy of the IDM operator on the recent optimization algorithms.  相似文献   
4.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
5.
Electrical energy is one of the key components for the development and sustainability of any nation. India is a developing country and blessed with a huge amount of renewable energy resources still there are various remote areas where the grid supply is rarely available. As electrical energy is the basic requirement, therefore it must be taken up on priority to exploit the available renewable energy resources integrated with storage devices like fuel cells and batteries for power generation and help the planners in providing the energy-efficient and alternative solution. This solution will not only meet electricity demand but also helps reduce greenhouse gas emissions as a result the efficient, sustainable and eco-friendly solution can be achieved which would contribute a lot to the smart grid environment. In this paper, a modified grey wolf optimizer approach is utilized to develop a hybrid microgrid based on available renewable energy resources considering modern power grid interactions. The proposed approach would be able to provide a robust and efficient microgrid that utilizes solar photovoltaic technology and wind energy conversion system. This approach integrates renewable resources with the meta-heuristic optimization algorithm for optimal dispatch of energy in grid-connected hybrid microgrid system. The proposed approach is mainly aimed to provide the optimal sizing of renewable energy-based microgrids based on the load profile according to time of use. To validate the proposed approach, a comparative study is also conducted through a case study and shows a significant savings of 30.88% and 49.99% of the rolling cost in comparison with fuzzy logic and mixed integer linear programming-based energy management system respectively.  相似文献   
6.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
7.
Electrocatalytic water splitting is an important method to produce green and renewable hydrogen (H2). One of the hindrances for wide applications of electrocatalysis in H2 production is the lack of freshwater resources. Comparatively, seawater splitting has become an effective approach for large-scale H2 production due to its abundant reserves. However, the increased complexity of seawater content emerged more problems in electrocatalytic seawater splitting. Recently, various strategies have been reported on improving the performance of electrocatalysts applied in seawater. Herein, this review firstly analyzed the mechanisms and challenges of electrocatalytic seawater splitting to evolve H2, and summarized the recent progress on H2 production in electrocatalytic seawater splitting. Furthermore, suggestions for future work have been provided for guidance.  相似文献   
8.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   
9.
《Ceramics International》2021,47(19):26991-27001
Hydroxyapatite (HA) scaffolds were fabricated using the space holder method with a pressureless sintering process in a systematically developed manner at different fabrication stages to increase the strength of the scaffold at high porosity. Polyvinyl alcohol (PVA) and Polymethyl methacrylate (PMMA) were used as binders and space holder agents, respectively. The physical properties of the HA scaffolds were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear shrinkage test, and porosity measurements. The mechanical properties of the HA scaffolds were analyzed using compressive strength measurements. The results revealed that the HA scaffold met the expected quality requirements with a compressive strength of 2.2 MPa at a porosity of 65.6% with pore sizes distributed in the range of 126–385 μm. The shrinkage of the scaffold diameter occurred by 20.27%, this diameter shrinkage predominantly to the shrinkage of the HA scaffold caused by sintering. Besides, suspect that a higher PMMA concentration causes pore size shrinkage upon sintering. The formation of pore interconnections was evidenced by SEM observations and the ‘translucent light method’ developed in this study. The results of the scaffold phase test using XRD showed that the final scaffold consisted only of the HA phase, as the PVA and PMMA phases burned out during the sintering process.  相似文献   
10.
This paper presents the development and implementation of an innovative mixed integer programming based mathematical model for an open pit mining operation with Grade Engineering framework. Grade Engineering comprises a range of coarse-separation based pre-processing techniques that separate the desirable (i.e. high-grade) and undesirable (i.e. low-grade or uneconomic) materials and ensure the delivery of only selected quantity of high quality (or high-grade) material to energy, water, and cost-intensive processing plant. The model maximizes the net present value under a range of operational and processing constraints. Given that the proposed model is computationally complex, the authors employ a data pre-processing procedure and then evaluate the performance of the model at several practical instances using computation time, optimality gap, and the net present value as valid measures. In addition, a comparison of the proposed and traditional (without Grade Engineering) models reflects that the proposed model outperforms the traditional formulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号