首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35977篇
  免费   3973篇
  国内免费   2512篇
电工技术   1127篇
技术理论   1篇
综合类   2217篇
化学工业   12940篇
金属工艺   3632篇
机械仪表   1113篇
建筑科学   1571篇
矿业工程   697篇
能源动力   1983篇
轻工业   2351篇
水利工程   485篇
石油天然气   1184篇
武器工业   107篇
无线电   2831篇
一般工业技术   5513篇
冶金工业   1498篇
原子能技术   1692篇
自动化技术   1520篇
  2024年   66篇
  2023年   551篇
  2022年   768篇
  2021年   1128篇
  2020年   1201篇
  2019年   1201篇
  2018年   1176篇
  2017年   1355篇
  2016年   1356篇
  2015年   1277篇
  2014年   1848篇
  2013年   2458篇
  2012年   2378篇
  2011年   2574篇
  2010年   1901篇
  2009年   2009篇
  2008年   1871篇
  2007年   2231篇
  2006年   2140篇
  2005年   1789篇
  2004年   1624篇
  2003年   1407篇
  2002年   1240篇
  2001年   1069篇
  2000年   949篇
  1999年   688篇
  1998年   582篇
  1997年   448篇
  1996年   471篇
  1995年   427篇
  1994年   398篇
  1993年   319篇
  1992年   263篇
  1991年   228篇
  1990年   200篇
  1989年   174篇
  1988年   134篇
  1987年   104篇
  1986年   86篇
  1985年   85篇
  1984年   77篇
  1983年   43篇
  1982年   53篇
  1981年   27篇
  1980年   22篇
  1979年   9篇
  1978年   12篇
  1974年   8篇
  1959年   8篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
深凹露天矿山由于其特殊的结构,爆破产生的炮烟扩散稀释较为困难,严重危害生产作业人员的生命安全与健康。基于实际矿山构建了深凹露天矿山的二维物理及数学模型,采用非稳态数值分析方法研究了不同爆破位置下,深凹露天矿山采坑内爆破炮烟的扩散规律。研究结果表明:不同爆破位置下,露天采坑内均出现复环流,爆破点位置是影响露天采坑内风流结构特征的重要因素;露天采坑内的炮烟最高浓度均随着时间变化而逐渐下降,但下降的速率逐步减小,呈现三个阶段的下降趋势;爆破位置位于背风侧时露天采坑内的炮烟最高浓度和降至安全浓度所需时间远高于迎风侧三个爆破位置;随着背风侧爆破点距采坑底部距离的减小,炮烟最高浓度及降至安全浓度所需时间先降低后增加,炮烟最高浓度及降至安全浓度所需时间随着迎风侧爆破位置距采坑底部距离的减小而增加。研究结果对于指导深凹露天矿山企业合理组织爆破后的生产作业和保障作业人员安全具有重要意义。  相似文献   
2.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
3.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
4.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
5.
Fuel cells (PEMFCs) are considered a clean alternative for the production of electricity. To improve their efficiency, it is necessary to understand the transport phenomena that determine their performance. This work analyzes the effective diffusion coefficients in the gas diffusion and catalyst layers (GDL and CL, respectively) based on theories such as effective medium approximation and percolation theory of a 3D multiphase nonisothermal model of a single channel PEMFC. We calculate polarization curves with different effective diffusion models and tortuosity factors m, n using OpenFOAM. The best model that approaches to experimental data is the Tomadakis-Sotirchos model with n = 4.0. The exponent m that represents the tortuosity due to the geometry has a high impact on the polarization curve construction compared to the exponent n. High values of diffusibility do not mean high values of current densities showing that there are other phenomena involved, such as water flooding.  相似文献   
6.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
7.
To investigate the influence of the addition of Pr–Ga alloys on magnetic properties and morphology of materials, the hot-deformed PrNd-Fe-B magnets were prepared by the addition of Pr–Ga alloys using a dual-alloys diffusion. The room-temperature coercivity of the hot-deformed PrNd-Fe-B magnets increases substantially from 1.68 to 2.34 T, while the remanence decreases from 1.42 to 1.24 T, by the addition of 5 wt% Pr–Ga alloys. Moreover, the thermal stability of coercivity improves from ?0.46%/oC to ?0.42%/oC. Two types of grain boundary phases (PrNd-rich and PrNd-Ga-rich) are generated at grain boundaries by microstructural analysis, resulting in the decrease of Fe element concentration from more than 60% to about 10% at grain boundaries. The decrease of ferromagnetic element concentration at grain boundaries and the refinement of grain are considered to be the main reasons for the improvement of coercivity and thermal stability.  相似文献   
8.
In the present study, hexagonal boron nitride (h-BN) was synthesized from boric acid and melamine by thermal annealing method in a nitrogen atmosphere. The pure h-BN was used as an efficient sorbent for the uptake of Cd2+ ions from the solution phase. The kinetics and sorption studies of metal ions onto the h-BN were carried out in batch adsorption experiments at different temperature, time, pH, sorbent dosage, and concentration of metal ions. The optimum pH for the removal of the Cd2+ ions was found to be pH 7. The effect of temperature showed that the process of Cd2+ sorption remained endothermic in the range of 298 K–328 K. The Lagergren's first and Ho's second kinetic models were tested to interpret the adsorption kinetic data, however the present data was explained well by Ho's model for kinetics. The thermodynamic perameters ΔG, ΔS and ΔH were determined using the available adsorption data at different temperatures. The physicochemical properties of the synthesized product were also characterized before and after adsorption by different analytical techniques like FT-IR, TGA, XRD and Point of Zero Charge (PZC). The morphology of the surface was analyzed with the help of Scanning Electron Microscopy. The h-BN proved to be an efficient adsorbent for the uptake of the Cd2+ ions from aqueous media.  相似文献   
9.
10.
为了实现在工业化生产中对α钛富氧层厚度预测和控制,通过实验研究α钛富氧层在高温空气环境中的形成及增厚过程,讨论热处理温度和时间的影响作用,建立高温(750~850℃)空气环境下关于温度、时间的富氧层增厚动力学模型。结果表明:当恒温热处理温度为750~850℃时,α钛富氧层厚度x与保温时间t0.5呈正比例关系,且升高热处理温度可显著提高富氧层增厚速度。在此温度范围内,氧原子的扩散激活能约为203473 J/mol,计算曲线与实验数据吻合性较好。结合文献中已有的扩散系数方程和实验测得的富氧层厚度数据,推导得到5个富氧层增厚动力学方程,其中3个方程的计算曲线与实验数据吻合性较好,可为实际生产中预估富氧层厚度提供理论支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号