首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78225篇
  免费   10205篇
  国内免费   6448篇
电工技术   5471篇
技术理论   1篇
综合类   9596篇
化学工业   10114篇
金属工艺   6101篇
机械仪表   6058篇
建筑科学   14166篇
矿业工程   3534篇
能源动力   1840篇
轻工业   2890篇
水利工程   3073篇
石油天然气   2589篇
武器工业   1229篇
无线电   4252篇
一般工业技术   9412篇
冶金工业   3600篇
原子能技术   347篇
自动化技术   10605篇
  2024年   180篇
  2023年   1201篇
  2022年   2240篇
  2021年   2670篇
  2020年   2727篇
  2019年   2300篇
  2018年   2378篇
  2017年   3026篇
  2016年   3343篇
  2015年   3400篇
  2014年   4852篇
  2013年   5142篇
  2012年   6173篇
  2011年   6137篇
  2010年   4754篇
  2009年   4785篇
  2008年   4572篇
  2007年   5503篇
  2006年   4870篇
  2005年   4112篇
  2004年   3386篇
  2003年   2837篇
  2002年   2397篇
  2001年   2105篇
  2000年   1803篇
  1999年   1468篇
  1998年   1175篇
  1997年   981篇
  1996年   832篇
  1995年   733篇
  1994年   616篇
  1993年   490篇
  1992年   368篇
  1991年   275篇
  1990年   253篇
  1989年   234篇
  1988年   135篇
  1987年   93篇
  1986年   37篇
  1985年   43篇
  1984年   49篇
  1983年   35篇
  1982年   35篇
  1981年   16篇
  1980年   36篇
  1979年   34篇
  1978年   5篇
  1964年   4篇
  1959年   5篇
  1955年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
2.
3.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   
4.
In this study, we report the three-point flexural strength and fracture toughness of monolithic hafnium carbide up to 2000 °C. HfC with different grain sizes was consolidated using the spark plasma sintering method. Coarse-grained monoliths showed a weak dependence on the strain rate during high-temperature tests at 1600 °C–2000 °C. In contrast, results for the ceramics with a grain size below 20 μm indicated a positive dependence of the yield strength vs strain rate. This allowed us to identify the activation energy for high-temperature deformation in flexure as 370 kJ/mol. This level of activation energy is in satisfactory agreement with reports about the diffusion of C in hafnium carbide.  相似文献   
5.
Glass-based materials are usually considered as excellent seals for jointing adjacent components in planar solid oxide fuel cells, but the uncontrollable crystallization in the glass may cause delamination and micro-cracks in such seals. To solve this problem, Al2O3 ceramic particles were added to a BaO–CaO–Al2O3–B2O3–SiO2 glass system to reduce negative effects caused by crystalline phase on the gas tightness and the joint strength in the seals. At an operating temperature of 750 °C, the glass-based seals with 20 wt% Al2O3 addition (GA80) exhibited extremely low leakage rates (~0.002 sccm/cm under an input gas pressure of 13.6 kPa) and higher shear strength (3.31 MPa). The Al2O3 ceramic addition and the crystalline phase BaAl2Si2O8 reinforced the glass matrix. Further thermal cycle analyses indicated that leakage rates for the GA80 seals remained at around 0.0025 sccm/cm after 10 thermal cycles, which was consistent with minor microstructural change and good interface bonding. Single cell testing with of GA80 seals was performed and the results demonstrated stable electrochemical performance through 6 thermal cycles at an open circuit voltage of 1.16–1.18 V, as well as a power density above 546 mW/cm2 at a current density of 925 mA/cm2. These results showed the high thermal cycle stability of the glass/Al2O3 composite seals in intermediate temperature planar solid oxide fuel cells.  相似文献   
6.
张立红  肖晓萍  李飞  崔开放 《锻压技术》2021,46(2):136-141,153
采用有限元模拟和实验研究了挤压钛合金弯曲管件。通过实验验证了工件的形状和尺寸精度,并通过有限元模拟分析了工艺参数对挤出过程中变形体的平均压应力分布情况和挤出弯管件的曲率半径的影响规律。结果表明:有限元模拟中,弯管件的曲率半径误差为6.03%,弯管直径误差为3.82%;在靠近定径带处,平均压应力呈非均匀分布;在焊合腔内,靠近细分流孔区域的平均压应力小于靠近粗分流孔区域的平均压应力,平均压应力的大小顺序在通过粗、细分流孔前后相反;在模具结构固定不变时,弯管件的曲率半径随挤压速度的减小而增大,不随挤压温度的变化而变化。  相似文献   
7.
The joining of liquid-phase sintered SiC (LPS-SiC) ceramics was conducted using spark plasma sintering (SPS), through solid state diffusion bonding, with Ti-metal foil as a joining interlayer. Samples were joined at 1400 °C, under applied pressures of either 10 or 30 MPa, and with different atmospheres (argon, Ar, vs. vacuum). It was demonstrated that the shear strength of the joints increased with an increase in the applied joining pressure. The joining atmosphere also affected on both the microstructure and shear strength of the SiC joints. The composition and microstructure of the interlayer were examined to understand the mechanism. As a result, a SiC-SiC joining with a good mechanical performance could be achieved under an Ar environment, which in turn could provide a cost-effective approach and greatly widen the applications of SiC ceramic components with complex shape.  相似文献   
8.
梯度分层铝合金蜂窝板是一种有效的吸能结构,本工作在梯度铝蜂窝结构的基础上根据梯度率的概念,通过改变蜂窝芯层的胞壁长度,设计了4种质量相同、梯度率不同的铝蜂窝夹芯结构。通过准静态压缩实验,并结合非线性有限元模拟准静态及冲击态下梯度铝蜂窝夹芯结构的变形情况及其力学性能,分析对比了相同质量下梯度铝蜂窝夹芯结构在准静态下的变形模式以及冲击载荷下分层均质蜂窝结构和不同梯度率的分层梯度蜂窝结构的动态响应和能量吸收特性。结果表明:在准静态压缩过程中,铝蜂窝梯度夹芯板的变形具有明显的局部化特征,蜂窝芯的变形为低密度优先变形直至密实,层级之间的密实化应变差随芯层密度的增大而逐渐减小;在高速冲击下,梯度蜂窝板并非严格按照准静态过程中逐级变形直至密实,而是在锤头冲击惯性及芯层密度的相互作用下整体发生的线弹性变形、弹性屈曲、塑性坍塌及密实化;另外,在本工作所设计的梯度率中,当梯度率为γ1=0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量下的均质蜂窝夹芯板,能量吸收提高了10.63%。  相似文献   
9.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
10.
One of the drawbacks of fusible clays is the narrow sintering interval due to a sharp increase in the amount of iron-silicate melt at a temperature of 1000–1100 °C, which hardens in the form of a glass phase upon cooling. This leads to a relatively low mechanical strength of the calcined samples and causes the danger of melting the granular material surface from such clays during the firing process. To increase the strength of samples of fusible clays, the influence of diabase and granitoid rocks was considered. It was found that the strengthening effect of diabase and granitoid rock additives in an amount of 20–50% in a mixture with fusible clay is due to an increase of total content of the crystalline phase (mullite, cristobalite and residual quartz) from 18–20% in clays without additives to 22–28 % - in mixtures with diabase and to 28–34% - with granitoid additives) at a temperature of 1050–1100 °C. This increase is due to the activation of synthesis processes of secondary mullite and crystallization from alkali-rich feldspar melt of amorphous silica, released from the structure of clay minerals. The established influence of the igneous rocks used made it possible to develop compositions and propose process flow sheet for producing aluminosilicate proppants based on fusible clays. The use of granitoid and diabase rocks in an amount of 20–70% with fusible clays produces lightweight aluminosilicate proppants with bulk density of 1.40–1.46 g/cm3 at temperature range of 1050–1100 °C, which can endure destructive pressures up to 34.5–52 MPa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号