首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44654篇
  免费   3423篇
  国内免费   2696篇
电工技术   1139篇
技术理论   1篇
综合类   2372篇
化学工业   14680篇
金属工艺   3527篇
机械仪表   2108篇
建筑科学   1222篇
矿业工程   307篇
能源动力   1678篇
轻工业   2261篇
水利工程   155篇
石油天然气   2529篇
武器工业   364篇
无线电   5625篇
一般工业技术   10508篇
冶金工业   863篇
原子能技术   468篇
自动化技术   966篇
  2024年   121篇
  2023年   610篇
  2022年   709篇
  2021年   1056篇
  2020年   1169篇
  2019年   1099篇
  2018年   1044篇
  2017年   1445篇
  2016年   1409篇
  2015年   1410篇
  2014年   2084篇
  2013年   2504篇
  2012年   2785篇
  2011年   3432篇
  2010年   2492篇
  2009年   2665篇
  2008年   2372篇
  2007年   3060篇
  2006年   3012篇
  2005年   2437篇
  2004年   2212篇
  2003年   1928篇
  2002年   1669篇
  2001年   1495篇
  2000年   1108篇
  1999年   936篇
  1998年   821篇
  1997年   608篇
  1996年   563篇
  1995年   496篇
  1994年   481篇
  1993年   396篇
  1992年   281篇
  1991年   208篇
  1990年   123篇
  1989年   117篇
  1988年   83篇
  1987年   52篇
  1986年   35篇
  1985年   64篇
  1984年   55篇
  1983年   38篇
  1982年   38篇
  1981年   10篇
  1980年   9篇
  1979年   6篇
  1976年   3篇
  1963年   3篇
  1959年   5篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
2.
《Ceramics International》2022,48(18):25849-25857
The continuous Nextel? 720 fiber-reinforced zirconia/alumina ceramic matrix composites (CMCs) were prepared by slurry infiltration process and precursor infiltration pyrolysis (PIP) process. The introduction of submicron zirconia powders into the aqueous slurry was optimized to offer comprehensively good sintering activity, high thermal resistance and good mechanical properties for the CMCs. Meanwhile, the zirconia and alumina preceramic polymers were used to strengthen the porous ceramic matrix through the PIP process. The final CMC sample achieved a high flexural strength of 200 MPa after one infiltration cycle of alumina preceramic polymer and thermal treatment at 1150 °C for 2 h. The flexural strength retention of the improved CMC sample was 104% and 89% respectively after thermal exposure at 1100 °C and 1200 °C for 24 h.  相似文献   
3.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
4.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
5.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
6.
In this work, coupling effects of water content, temperature, oxygen density, and polytetrafluoroethylene (PTFE) loading on oxygen transport through an ionomer thin film on a platinum surface in a catalyst layer of a proton exchange membrane (PEM) fuel cell are investigated using molecular dynamics approach. Taguchi orthogonal algorithm is employed to comprehensively analyze the coupling effects in a limited number of cases. It is found that the effect of operation temperature is the weakest among the four factors, which has the smallest effect index 14.4. Coupling effects including the PTFE loadings on the oxygen transfer through the ionomer thin film is uncovered. Less PTFE loadings should be beneficial for the oxygen transfer. The chemical potential gradient is considered as the major driven force for the oxygen transport through the ionomer thin film, and oxygen density is the dominating factor, significantly affecting the chemical potential in the thin film.  相似文献   
7.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
8.
《Ceramics International》2022,48(21):31559-31569
Colloidal Zinc oxide quantum dots (ZnO QDs) prepared with varying concentrations through precipitation method were deposited on flexible ITO/PET substrates using spin-coating technique. Various characterization tools were utilized to investigate the morphological, structural, electrical and optical properties of the films. The crystallinity of the films was found to improve with increasing ZnO QD concentration (ZQC) as evident from the X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) studies. Crystallographic and optical parameters were evaluated and explained in depth. The average nanograin size and bandgap were increased and decreased respectively, from ~5 nm to ~8 nm and 3.29 eV–3.24 eV with an increase in ZQC from 10 mg/mL to 70 mg/mL. Columnar structure growth of the films is revealed by AFM results. The films showed decent optical transparency up to 81%. All the ZnO films exhibited n-type semiconducting property as indicated by the electrical measurements with carrier mobility and low resistivity of 12.21–26.63 cm2/Vs and 11.84 × 10?3 to 13.16 × 10?3 Ω cm respectively. Based on the experimental findings, ZnO QD nanostructure film grown at 50 mg/mL is envisaged to be a potential candidate for flexible perovskite photovoltaic application.  相似文献   
9.
The design of polymer acceptors plays an essential role in the performance of all-polymer solar cells. Recently, the strategy of polymerized small molecules has achieved great success, but most polymers are synthesized from the mixed monomers, which seriously affects batch-to-batch reproducibility. Here, a method to separate γ-Br-IC or δ-Br-IC in gram scale and apply the strategy of monomer configurational control in which two isomeric polymeric acceptors (PBTIC-γ-2F2T and PBTIC-δ-2F2T) are produced is reported. As a comparison, PBTIC-m-2F2T from the mixed monomers is also synthesized. The γ-position based polymer (PBTIC-γ-2F2T) shows good solubility and achieves the best power conversion efficiency of 14.34% with a high open-circuit voltage of 0.95 V when blended with PM6, which is among the highest values recorded to date, while the δ-position based isomer (PBTIC-δ-2F2T) is insoluble and cannot be processed after parallel polymerization. The mixed-isomers based polymer, PBTIC-m-2F2T, shows better processing capability but has a low efficiency of 3.26%. Further investigation shows that precise control of configuration helps to improve the regularity of the polymer chain and reduce the π–π stacking distance. These results demonstrate that the configurational control affords a promising strategy to achieve high-performance polymer acceptors.  相似文献   
10.
The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2000 h with initial luminance values above 450 cd m−2, a peak efficiency of 12.6 lm W−1, and sub-minute turn-on times. The stability of the devices is also studied by measuring the photoluminescence (PL) of the semiconductor during electroluminescent operation. The findings suggest that it is possible to observe the quenching of the PL in vertically stacked devices due to the advancement of the doped fronts in the film and an immediate PL recovery when the bias is removed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号