首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124382篇
  免费   17394篇
  国内免费   6005篇
电工技术   4269篇
技术理论   6篇
综合类   7558篇
化学工业   26055篇
金属工艺   11680篇
机械仪表   7066篇
建筑科学   8760篇
矿业工程   5255篇
能源动力   4574篇
轻工业   10312篇
水利工程   3049篇
石油天然气   4880篇
武器工业   684篇
无线电   11237篇
一般工业技术   17542篇
冶金工业   13413篇
原子能技术   2170篇
自动化技术   9271篇
  2024年   248篇
  2023年   2958篇
  2022年   4379篇
  2021年   6462篇
  2020年   5159篇
  2019年   4801篇
  2018年   4511篇
  2017年   5409篇
  2016年   6431篇
  2015年   6746篇
  2014年   8087篇
  2013年   8626篇
  2012年   7826篇
  2011年   7731篇
  2010年   5983篇
  2009年   6082篇
  2008年   5565篇
  2007年   7174篇
  2006年   7375篇
  2005年   6320篇
  2004年   4887篇
  2003年   4511篇
  2002年   3549篇
  2001年   2580篇
  2000年   2243篇
  1999年   1897篇
  1998年   1461篇
  1997年   1242篇
  1996年   1213篇
  1995年   1028篇
  1994年   887篇
  1993年   663篇
  1992年   577篇
  1991年   489篇
  1990年   462篇
  1989年   396篇
  1988年   266篇
  1987年   218篇
  1986年   195篇
  1985年   175篇
  1984年   186篇
  1983年   126篇
  1982年   116篇
  1981年   65篇
  1980年   63篇
  1979年   30篇
  1966年   25篇
  1964年   34篇
  1962年   64篇
  1959年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The combination of inorganic (e.g., ferrite nanoparticles) and organic (e.g., conducting polymers) materials in the fabrication of heterojunctions or composites is an attractive scheme in the field of photocatalysis. We took the advantage of this phenomenon by fabricating MFerrite (M = Co, Ni, and Zn) @polypyrrole (MFerrite@Ppy) nanocomposites with a varying weight percentage of Ppy for the hydrogen production through photocatalytic water splitting under visible light irradiation. The structural, spectral, morphological, compositional, and optical features of the as-prepared nanocomposites were analyzed in full depth. The average crystallite sizes were estimated to be 30–40 nm from the XRD patterns which were further validated by TEM images from which a core-shell structure of the composites can be inferred. Likewise, the SEM images revealed spherical Ppy particles with a diameter in the range of 100–300 nm. From a photocatalytic viewpoint, CoFerrite@30Ppy is endowed with some peculiar characteristics including but not limited to strong light-harvesting ability (ranging between 300 and 650 nm), narrow optical band gap (as low as 1.6 eV), and higher photoluminescence (PL) lifetime (6.41 ns) which justify why it stands out among all composites in terms of photocatalysis. Under 8 h illumination of simulated visible light and using triethanolamine (TEOA) as a hole scavenger and Eosin-Y (EY) as a dye sensitizer, the photocatalytic hydrogen evolution (HER) amount for CoFerrite@30Ppy was found to be 10.44 mmol g?1, far greater than any other composite catalysts in this study. From the PL spectra, it can be pointed out that sensitization of CoFerrite with 30 wt % Ppy conduces to simultaneous deceleration of the electron-hole recombination process and acceleration of the transference of excitons within the system.  相似文献   
2.
The development of cost-effective bifunctional catalysts with excellent performance and good stability is of great significance for overall water splitting. In this work, NiFe layered double hydroxides (LDHs) nanosheets are prepared on nickel foam by hydrothermal method, and then Ni2P(O)–Fe2P(O)/CeOx nanosheets are in situ synthesized by electrodeposition and phosphating on NiFe LDHs. The obtained self-supporting Ni2P(O)–Fe2P(O)/CeOx exhibit excellent catalytic performances in alkaline solution due to more active sites and fast electron transport. When the current density is 10 mA cm?2, the overpotential of hydrogen evolution reaction and oxygen evolution reaction are 75 mV and 268 mV, respectively. In addition, driven by two Ni2P(O)–Fe2P(O)/CeOx electrodes, the alkaline battery can reach 1.45 V at 10 mA cm?2.  相似文献   
3.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
4.
It is extremely desirable to develop high hydrogen evolution activity and stable visible-light-driven photocatalysts. The sluggish oxidation process and holes accumulation are the main obstacles to high catalysis activity and photo-stability. An efficient γ-NiOOH/ZnCdS photocatalyst was prepared by in-situ hydrothermal method. The γ-NiOOH nanosheets distribute on ZnCdS nanospheres surface and accelerate holes transfer. The hydrogen evolution rate is up to 48.60 mmol g?1 h?1 under visible-light illumination (λ = 400–780 nm), about 10.8 times of pure ZnCdS (4.50 mmol g?1 h?1) and 1.8 times of general β-NiOOH modified ZnCdS (27.40 mmol g?1 h?1). And apparent quantum yield of γ-NiOOH/ZCS-100 is up to 18.23% (400 nm). The carrier lifetime extends from 5.50 ns (ZnCdS) to 6.10 ns (γ-NiOOH/ZCS), examined by steady photoluminescence and time-resolved photoluminescence. Moreover, the γ-NiOOH/ZCS photocatalyst has exhibited excellent photo-stability even after one-year of storage. The γ-NiOOH nanosheets can be an excellent co-catalyst on accelerating both holes transfer and oxidation process for high photo-stability and photo-activity.  相似文献   
5.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
6.
对浸矿后离子型稀土原地浸矿场采用清水进行淋洗,在184天的清水淋洗过程中,尾水氨氮值从最开始的507mg/L,降低至140mg/L,淋洗尾水pH4.52~3.10。淋洗尾水采用两级反渗透膜分离,既回收有价资源稀土,又能使出水氨氮达标。结果表明,产水氨氮浓度稳定低于15mg/L,对稀土的截留率高于98.25%,浓水中稀土离子平均浓度313.4mg/L,可进一步回收稀土资源。  相似文献   
7.
RE disilicates are good candidates as environmental/thermal barrier coating for SiCf/SiC composite in harsh gas turbine engines. We designed (Yb1?xHox)2Si2O7 solid solutions and studied mechanical properties, thermal properties, and water vapor resistance. Powders with different compositions were synthesized by pressureless sintering, and bulk samples were prepared by Spark Plasma Sintering (SPS). Polymorphic changes with temperature and composition of the solid solutions were examined. Through doping Ho into Yb2Si2O7, water vapor corrosion resistance is significantly promoted, and thermal expansion coefficient is maintained close to that of Si-based ceramics. Compared with host disilicates, thermal conductivity of solid solutions are decreased, and mechanical properties, including Vickers hardness and fracture toughness, are increased. A two-phase domain is found at (Yb1/2Ho1/2)2Si2O7, and the γ to δ phase transition of Ho2Si2O7 is observed during SPS. Among all samples, γ-(Yb1/3Ho2/3)2Si2O7 possesses superior high temperature stability, and excellent water vapor resistance, indicating its performance as environmental/thermal barrier coating.  相似文献   
8.
9.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
10.
The speed of the oxygen evolution reaction seriously affects the hydrogen production efficiency of water electrolysis. Hence it is crucial to develop efficient and durable OER electrocatalysts. Construction of heterojunction catalysts is also one of the strategies to develop efficient catalysts. In this paper, a pea-like Cu/Cu2S–C3 Mott?Schottky electrocatalyst was self-constructed by vapor deposition, while CF (copper foam) was used as substrate material and copper source, and thiourea was served as sulfur source. The built-in electric field is formed at the metal-semiconductor interface, which endows it with promising electrocatalytic performance. As the working electrode, the overpotentials of Cu/Cu2S–C3 required to reach the current density of 10 and 50 mA cm?2 were about 170 and 335 mV. The impact of the Mott-Schottky structure on the catalyst was also reflected in stability. The i-t tests of the sample Cu/Cu2S–C3 were carried out under 10 and 60 mA cm?2 and performed well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号