首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37076篇
  免费   3950篇
  国内免费   3465篇
电工技术   1223篇
技术理论   4篇
综合类   5071篇
化学工业   2815篇
金属工艺   727篇
机械仪表   880篇
建筑科学   14996篇
矿业工程   2186篇
能源动力   877篇
轻工业   1349篇
水利工程   4617篇
石油天然气   951篇
武器工业   251篇
无线电   1301篇
一般工业技术   1708篇
冶金工业   1262篇
原子能技术   288篇
自动化技术   3985篇
  2024年   61篇
  2023年   444篇
  2022年   941篇
  2021年   1130篇
  2020年   1102篇
  2019年   978篇
  2018年   872篇
  2017年   1127篇
  2016年   1223篇
  2015年   1333篇
  2014年   2417篇
  2013年   2004篇
  2012年   2485篇
  2011年   2915篇
  2010年   2407篇
  2009年   2518篇
  2008年   2358篇
  2007年   2947篇
  2006年   2634篇
  2005年   2386篇
  2004年   2017篇
  2003年   1663篇
  2002年   1386篇
  2001年   1051篇
  2000年   875篇
  1999年   697篇
  1998年   521篇
  1997年   378篇
  1996年   320篇
  1995年   263篇
  1994年   214篇
  1993年   143篇
  1992年   126篇
  1991年   92篇
  1990年   80篇
  1989年   59篇
  1988年   57篇
  1987年   45篇
  1986年   36篇
  1985年   24篇
  1984年   30篇
  1983年   18篇
  1982年   15篇
  1981年   14篇
  1980年   10篇
  1979年   40篇
  1978年   5篇
  1977年   4篇
  1959年   6篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(24):36835-36844
Molybdate and tungstate with scheelite-type structure are excellent self-luminescent materials, which can be used as ideal hosts for the doping of rare-earth ions. In this study, a series of Eu3+-activated SrAO4 (A = Mo and W) phosphors were successfully synthesized, and their crystal structures, photoluminescence properties, and temperature measurement performance were analyzed in detail. These phosphors were excited by UV light (291 nm and 247 nm, respectively), with clear energy transfer (ET) (MoO42?→Eu3+ or WO42?→Eu3+). According to fluorescence intensity ratio (FIR) and Judd–Ofelt (J–O) theory, compared to SrWO4:0.01Eu3+ phosphor, SrMoO4:0.01Eu3+ phosphor exhibited better thermal stability, with relatively low Sa value (maximum values were 5.082 %K?1 and 20.74 %K?1, respectively), and their Sr values were not significantly different (maximum values were 0.864 %K?1 and 0.83 %K?1, respectively). Sa value was negatively correlated to central asymmetry of Eu3+, but the optimal Sr value tended to be more suitable for central asymmetry of Eu3+. In addition, Eu3+ exhibited stronger central asymmetry as well as covalency of Eu–O bond in SrMoO4. Results reveal that SrMoO4:xEu3+ and SrWO4:xEu3+ can be used for luminescent thermometers.  相似文献   
2.
The effect of ammonia (NH3) contained in hydrogen (H2) gas on hydrogen environment embrittlement (HEE) of SCM440 low-alloy steel was studied in association with the NH3 concentration, loading rate, and gas pressure. NH3 worked as both mitigator of the HEE and inducer of hydrogen embrittlement (HE) depending on the testing conditions. The mitigation of the HEE was achieved by the deactivation of the iron (Fe) surface for H2 dissociation caused by the preferential adsorption of NH3 on the Fe surface, which is enhanced by the increase in the NH3 concentration and decrease in the H2 gas pressure. NH3 induced HE was caused due to creating hydrogen by the NH3 decomposition. Since the NH3 decomposition rate is low, the induction effect was observed when the loading rate was low. The effect of NH3 was determined by the competition of the mitigation and induction effects.  相似文献   
3.
《Soils and Foundations》2022,62(6):101224
Internal erosion is a major threat to hydraulic earth structures, such as river levees and dams. This paper focuses on suffusion and suffosion phenomena which are caused by the movement of fine particles in the granular skeleton due to seepage flow. The present study investigates the impact of internal erosion on the dynamic response under cyclic torsional shear and monotonic responses under triaxial compression and torsional simple shear. A series of experiments, using a gap-graded silica mixture with a fines content of 20%, is performed under loose, medium, and dense conditions using a novel erosion hollow cylindrical torsional shear apparatus. The erosion test results indicate that the critical hydraulic gradient and the rate of erosion are density-dependent, where a transition from suffosion to suffusion is observed as the seepage continues. Regardless of the sample density, variations in the radial strain and particle size distribution, along the specimen height after erosion, are no longer uniform. Furthermore, the dynamic shearing results show that the small-strain shear modulus increases, but the initial damping ratio decreases after internal erosion, probably due to the removal of free fines. In addition, the elastic threshold strain and reference shear strain values are found to be higher for the eroded and non-eroded specimens, respectively. Finally, based on drained monotonic loading, the post-erosion peak stress ratio increases remarkably under triaxial compression, while that under torsional simple shear depends on the relative density where the direction of loading is normal to the direction of seepage. These observations indicate that the horizontal bedding plane becomes weaker, while the vertical one becomes stronger after downward erosion.  相似文献   
4.
Internal stability assessment of geosynthetic-reinforced soil structures (GRSSs) has been commonly carried out assuming plane-strain conditions and dry backfills. However, failures of GRSSs usually show three-dimensional (3D) features and occur under unsaturated conditions. A procedure based on the kinematic limit-analysis method is proposed herein to assess 3D effects and the role of steady unsaturated infiltration on the required geosynthetic strength for GRSSs. A suction stress-based framework is used to describe the soil stress behavior under steady unsaturated infiltration. Based on the principle of energy-work balance, the required geosynthetic strength is determined. A comparison analysis with the prior research is conducted to verify the developed method. Two kinds of backfills, i.e., high-quality backfill and marginal backfill, are considered for comparison in this work. It is shown that accounting for 3D effects and the role of unsaturated infiltration considerably reduces the required geosynthetic strength. The 3D effects are primarily affected by the width-to-height ratio of GRSSs, and the contribution of unsaturated infiltration is mainly influenced by the soil type, flow rate, GRSS's height, and location of the water table.  相似文献   
5.
Soil column is often investigated in the improvement of dredged slurries. Different from the smear zone, the soil column forms gradually and has extremely low permeability. This study presents an analytical solution for soil consolidation considering the increasing radius of the soil column and time-dependent discharge capacity. Based on the solution, the influence of the radius' increase on the consolidation behavior is found significant when the soil column has low permeability and large final radius, and the increase of formation time can lead to the increase of consolidation speed and final consolidation degree.  相似文献   
6.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   
7.
As a new type of material for civil engineering projects, the rubber and sand mixture is widely used in roadbed fillers, offering environmental benefits over traditional tyre disposal methods. This study uses a large-scale direct shear apparatus to examine the interface shear properties of the geogrid-reinforced rubber and sand mixture, considering different particle size ratios (r), rubber contents, and normal stresses. Based on indoor tests, direct shear models of the mixture with different values of r are established in PFC3D, revealing the meso-mechanical mechanism of the mixture in the direct shear process. The results show that when r is greater than 1, incorporating a certain amount of rubber particles can increase the shear strength of the mixture. The r values of 15.78, 7.63, and 3.98 correspond to an optimal rubber content of 30%, 10%, and 20%, respectively. When r is less than 1, mixing rubber particles can only reduce the shear strength of the mixture. When the rubber content is low, the smaller the value of r, the greater is the thickness of the shear band. Furthermore, the normal and tangential contact forces are greater. The fabric anisotropy evolution law of the mixture is consistent with the change in the contact force distribution.  相似文献   
8.
The freeze–thaw cycling damages the soil structure, and the shear performance of soil are degraded. A series of tests on lime–soil(L–S) and fiber–lime–soil(F–L–S), including freeze–thaw test, the triaxial compression test, nuclear magnetic resonance (NMR) test and scanning electron microscope (SEM) test, were completed. The test results showed that fiber reinforcement changed the stress–strain behavior and failure pattern of soil. The cohesion and internal friction angle of soil gradually decreased with the increase of freeze–thaw cycles (F–T cycles). The pore radius and porosity of soil increased, while the micro pore volume decreased, and the small pore volume, medium pore volume and large pore volume increased, and the large pore volume had a little variation after 10 F–T cycles. The number of pores of F–L–S was less than L–S, demonstrating that the addition of fiber helped to reduce the pore volume. The interweaved fibers limited the development and the connection of cracks. By means of the spatial restraint effect of fiber on the soil and the friction action between fiber and soil, the shear performances and freeze–thaw durability of F–L–S better were than that of L–S.  相似文献   
9.
10.
The micro-arc oxidation (MAO) coatings were prepared in four different electrolyte systems, including mixed acid, phosphate, phosphate-aluminate and phosphate-silicate electrolytes. The friction and wear properties of MAO coatings in ambient air, seawater and four groups of saline solutions related to seawater were investigated. The results showed that the addition of silicate to phosphate could increase the density of the coating. The phosphate-aluminate ceramic layer exhibited the lowest wear rate in various environments. Additionally, the friction coefficient and wear rate of MAO coating in seawater were lower than those in ambient air, which was due to the boundary lubrication effect of seawater. Meanwhile, the presence of divalent metal salts in seawater made its lubricity better than other salt solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号