首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   5篇
化学工业   2篇
金属工艺   1篇
矿业工程   3篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
本文研究了集成橡胶动态疲劳过程中性能以及结构的变化情况;研究指出,在疲劳过程中,集成橡胶发生了分子链的断裂,断裂后的自由端链在周期性应力的作用下与空气中的氧气作用生成了羰基;动态疲劳过程中集成橡胶的物理机械性能明显减小;填充SIBR硫化胶交联密度随着疲劳次数的增大逐渐降低;动态力学性能也发生了显著变化。  相似文献   
2.
旨在探究干式切削条件下切削参数对7050-T7451铝合金表面完整性的影响规律,基于单因素面铣削实验,得到了切削参数对切削力、工件表面形貌、加工硬化和残余应力的影响规律。结果表明:切削三要素对切削力和工件表面粗糙度有着明显的影响,在切削速度较低时,X向切削力略微增大,而切削速度由500 m/min变化到1000 m/min时,X向切削力逐渐较小,随后呈增大的变化趋势,切削力与切削深度、进给量呈正相关关系。较高的切削速度和较小的进给量可以改善表面粗糙度,切削深度对表面粗糙度影响较小;加工硬化随切削速度与进给量的增大呈先增大后减小的变化趋势,而加工硬化程度与切削深度呈负相关关系;残余应力随切削参数的改变呈“勺”形分布,切削速度与进给量对残余应力的影响较大,且表层残余压应力的最大值基本在0.05~0.2 mm,而亚表层残余拉应力最大值在0.25~0.4 mm。  相似文献   
3.
采用高温固相法合成了红色荧光粉Ca_3Y_2Si_3O_(12):Eu~(3+)。研究了Eu~(3+)离子掺杂浓度、助熔剂及Gd~(3+)共掺杂对荧光粉发光特性的影响。XRD检测结果显示,荧光粉的主晶相为Ca_3Y_2Si_3O_(12),属单斜晶系。荧光光谱分析表明:硅酸盐荧光粉Ca_3Y_2Si_3O_(12):Eu~(3+)的发射光谱包含2个主峰,峰值分别位于590和614 nm,归属于Eu~(3+)离子从~5D_0→7~F_1和~7F_2的特征跃迁。用614 nm最强峰监测,得到激发光谱为一多峰宽带(200~500 nm)。改变Eu~(3+)离子掺杂浓度发现:随着掺杂量增加,荧光粉发光强度先增加后降低,最佳掺杂量为20 mol%;讨论了几种助熔剂的影响:NaCl、CaF_2作为助熔剂,对荧光粉的发光强度影响不大,H_3BO_3作为助熔剂降低荧光粉的发光强度,而NH_4F能显著提高荧光粉的发光强度;Gd~(3+)可以作为一种很好的共激活剂,敏化Eu~(3+)离子发光。  相似文献   
4.
为探究铣削参数对铝合金表面质量和刀具磨损的影响机理,选择7075铝合金为研究对象,基于AdvantEdge有限元分析和铣削实验,得到了铣削速度对铣削力和铣削温度的影响规律,并将铣削后的工件和刀具进行SEM分析,探明了铣削速度对7075铝合金表面成形机理和刀具磨损机理的影响。结果表明:铣削温度随铣削速度的增大而增大,X向铣削力和Y向铣削力与铣削速度呈正相关关系,然而在铣削速度达到750 m/min后,Y向铣削力增大幅度减小,此外X向铣削力远大于Y向铣削力;在铣削速度较低时刀具的主要磨损机理为粘结磨损,随铣削速度增大到750 m/min后,主要磨损形式由粘结磨损逐渐转变为剥落磨损和磨粒磨损;在铣削过程中工件亚表面的微观结构显示出明显的白层,其次当铣削速度达到1260 m/min后,还伴随着明显的材料堆积现象以及裂纹或撕裂等亚表面缺陷。  相似文献   
5.
采用真空热压烧结法制备铜-石墨复合材料,研究石墨质量分数分别为2%、5%和10%时,复合材料的密度、显微硬度、三点弯曲强度和摩擦磨损性能。结果表明,热压烧结法制备的复合材料组织较为致密,石墨分散均匀。随着石墨含量的增加,复合材料的硬度、强度下降,力学性能变差。复合材料的摩擦因数随着载荷的增加而增大,随着石墨含量的增加而降低,当石墨含量为10%时,复合材料的摩擦因数和质量磨损量最低,耐磨性能最好。  相似文献   
6.
研究炭黑网络化程度对填充天然橡胶硫化胶伸张疲劳过程中介观结构和动态粘弹性的影响。结果表明:疲劳寿命与炭黑用量几乎呈线性关系;随着疲劳程度的增大,硫化胶损耗模量(E″)和损耗因子(tanδ)均有所降低;炭黑网络化程度较低时,未疲劳硫化胶tanδ的温度依赖性较弱,而炭黑网络化程度较高时则依赖性较强,且此时E″出现了峰值;未疲劳硫化胶中炭黑聚集体呈球状排列,而疲劳后炭黑聚集体垂直于拉伸方向的平面呈链状排列。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号