首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8160篇
  免费   460篇
  国内免费   104篇
电工技术   400篇
综合类   100篇
化学工业   1873篇
金属工艺   422篇
机械仪表   133篇
建筑科学   208篇
矿业工程   121篇
能源动力   2489篇
轻工业   73篇
水利工程   36篇
石油天然气   55篇
武器工业   6篇
无线电   590篇
一般工业技术   1358篇
冶金工业   155篇
原子能技术   159篇
自动化技术   546篇
  2024年   38篇
  2023年   724篇
  2022年   376篇
  2021年   407篇
  2020年   752篇
  2019年   578篇
  2018年   230篇
  2017年   480篇
  2016年   485篇
  2015年   446篇
  2014年   452篇
  2013年   437篇
  2012年   265篇
  2011年   184篇
  2010年   197篇
  2009年   238篇
  2008年   82篇
  2007年   211篇
  2006年   321篇
  2005年   185篇
  2004年   107篇
  2003年   100篇
  2002年   180篇
  2001年   140篇
  2000年   95篇
  1999年   121篇
  1998年   62篇
  1997年   29篇
  1996年   52篇
  1995年   47篇
  1994年   35篇
  1993年   28篇
  1992年   18篇
  1991年   28篇
  1990年   26篇
  1989年   25篇
  1988年   75篇
  1987年   172篇
  1986年   161篇
  1985年   34篇
  1984年   19篇
  1983年   11篇
  1982年   12篇
  1981年   14篇
  1980年   13篇
  1979年   14篇
  1978年   7篇
  1976年   3篇
  1972年   2篇
  1951年   3篇
排序方式: 共有8724条查询结果,搜索用时 19 毫秒
1.
The goal of the study was to evaluate and compare the physical properties of control, pretreated and densified corn stover, switchgrass, and prairie cord grass samples. Ammonia Fiber Expansion (AFEX) pretreated switchgrass, corn stover, and prairie cord grass samples were densified by using the comPAKco device developed by Federal Machine Company of Fargo, ND. The densified biomass were referred as “PAKs” in this study. All feedstocks were ground into three different grind size of 2, 4 and 8 mm prior to AFEX pretreatment and the impact of grinding on pellet properties was studied. The results showed that the physical properties of AFEX-PAKed material were not influenced by the initial grind size of the feedstocks. The bulk density of the AFEX-PAKed biomass increased by 1.2–6 fold as compared to untreated and AFEX-pretreated materials. The durability of the AFEX-PAKed materials were between 78.25 and 95.2%, indicating that the AFEX-PAKed biomass can be transported easily. To understand the effect of storage on the physical properties of these materials, samples were stored in the ambient condition (20 ± 2 °C and 70 ± 5% relative humidity) for six months. After storage, thermal properties of the biomass did not change but glass transition temperature decreased. The water absorption index and water solubility index of AFEX-treated and AFEX-PAKed biomass showed mixed trends after storage. Moisture content decreased and durability increased upon storage.  相似文献   
2.
We report a simple processing method to simultaneously improve the efficiency and stability of organic solar cells (OSCs). Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxy-thiophene (PEDOT:PSS), widely used as hole transport layer (HTL) in OSCs, tends to accelerate the degradation of devices because of its hygroscopic and acidic properties. In this regard, we have modified PEDOT:PSS to reduce its hygroscopic and acidic properties through a condensation reaction between PEDOT:PSS and poly(ethylene glycol) methyl ether (PEGME) in order to improve the efficiency and stability of OSCs. As a result, the power conversion efficiency (PCE) increased by 21%, from 2.57% up to 3.11%. A better energy level alignment by the reduced work function of the modified PEDOT:PSS with a highest occupied molecular orbital (HOMO) level of poly(3-hexylthiophene-2,5-diyl) (P3HT) is considered the origin of the improved the efficiency. The half-life of OSCs with PEDOT:PSS modified with PEGME buffer layer also increased up to 3.5 times compared to that of devices with pristine PEDOT:PSS buffer layer.  相似文献   
3.
MC nylon-6-b-polyether amine copolymers were prepared with macro-initiator based on amino-terminated polyether amine functionalized with isocyanate via in-situ polymerization. It was found that the introduction of polyether amine delayed the polymerization process of caprolactam by increasing apparent activation energy and pre-exponential factor, resulting in the decrease of molecular weight of nylon-6. The motion of molecular chain of the copolymers was easy because of the decreased hydrogen bonds and weakened inter-molecular forces. The physical entanglement of molecular chains of the copolymers was significant and strong which increased the entanglement density. Only the nylon-6 phase crystallized in the copolymers and the crystal grain size, spherulite size and crystallinity of the copolymers decreased. A small amount of γ crystal formed at high polyether amine content. The copolymers presented obvious strain hardening behavior in stress-strain curves and the loss factor dramatically increased while the glass transition temperature and storage module decreased. The fracture surface of the copolymers became rough and presented hairy structure, indicating that the toughening mechanism of the copolymers corresponded to the multi-layer crack extension mechanism.  相似文献   
4.
In this study we analyze the optoelectronic properties and structural characterization of hydrogenated polymorphous silicon thin films as a function of the deposition parameters. The films were grown by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of argon (Ar), hydrogen (H2) and dichlorosilane (SiH2Cl2). High-resolution transmission electron microscopy images and Raman measurements confirmed the existence of very different internal structures (crystalline fractions from 12% to 54%) depending on the growth parameters. Variations of as much as one order of magnitude were observed in both the photoconductivity and effective absorption coefficient between the samples deposited with different dichlorosilane/hydrogen flow rate ratios. The optical and transport properties of these films depend strongly on their structural characteristics, in particular the average size and densities of silicon nanocrystals embedded in the amorphous silicon matrix. From these results we propose an intrinsic polymorphous silicon bandgap grading thin film to be applied in a p–i–n junction solar cell structure. The different parts of the solar cell structure were proposed based on the experimental optoelectronic properties of the pm-Si:H thin films studied in this work.  相似文献   
5.
6.
For the first time, we present the unique features exhibited by power 4H–SiC UMOSFET in which N and P type columns (NPC) in the drift region are incorporated to improve the breakdown voltage, the specific on-resistance, and the total lateral cell pitch. The P-type column creates a potential barrier in the drift region of the proposed structure for increasing the breakdown voltage and the N-type column reduces the specific on-resistance. Also, the JFET effects reduce and so the total lateral cell pitch will decrease. In the NPC-UMOSFET, the electric field crowding reduces due to the created potential barrier by the NPC regions and causes more uniform electric field distribution in the structure. Using two dimensional simulations, the breakdown voltage and the specific on-resistance of the proposed structure are investigated for the columns parameters in comparison with a conventional UMOSFET (C-UMOSFET) and an accumulation layer UMOSFET (AL-UMOSFET) structures. For the NPC-UMOSFET with 10 µm drift region length the maximum breakdown voltage of 1274 V is obtained, while at the same drift region length, the maximum breakdown voltages of the C-UMOSFET and the AL-UMOSFET structures are 534 and 703 V, respectively. Moreover, the proposed structure exhibits a superior specific on-resistance (Ron,sp) of 2  cm2, which shows that the on-resistance of the optimized NPC-UMOSFET are decreased by 56% and 58% in comparison with the C-UMOSFET and the AL-UMOSFET, respectively.  相似文献   
7.
Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene’s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π–π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π–π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV–vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.  相似文献   
8.
The Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) low-permittivity microwave dielectric ceramics were prepared through solid-state reaction at 1350–1450 °C for 5 h. The relations between microwave dielectric properties and phase compositions for non-stoichiometric Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) ceramics have been investigated. A single CaSnSiO5 phase with abnormally positive temperature coefficient of resonant frequency (τf = + 62.5 ppm/°C) was synthesised at 1450 °C. This composition was an effective τf compensator of CaSiO3 and Ca3SnSi2O9 phases with typically negative τf value. The CaSiO3 second phase was related to the Sn deficiency in the CaSn(1-x)SiO(5-2x) (0 < x < 1.0) composition, whereas the Ca3SnSi2O9 second phase was obtained by controlling the Ca:Sn:Si ratios on the basis of the Ca(1+2y)SnSi(1+y)O(5+4y) (0 < y < 1.0) composition. A promising low-permittivity millimetre-wave ceramic with most excellent microwave dielectric properties (εr = 10.2, Q×f = 81,000 GHz and τf = −4.8 ppm/°C) was produced from the Ca(1+2y)SnSi(1+y)O(5+4y) (y = 0.4) ceramic.  相似文献   
9.
Since the outset of power system reform, one of the main objectives of regulation has been to assess whether the market, of its own accord, can induce agents to adopt decisions that maximise social welfare.This paper analyses the effect of generating companies' risk aversion on their medium-term (typically 1 year) hydroelectric resource planning, along with its possible inducement of system operation that deviates from the centralised (maximum social welfare) solution.Forward markets may play a key role by making hedging instruments available to risk-averse agents. A stylised mathematical model is used in this study to prove the equivalence of centralised planning and market equilibrium in the presence of such agents under the following assumptions: 1) both the spot and forward markets are perfectly competitive; 2) it has at least one risk-neutral consumer or arbitrageur; 3) all agents share the same beliefs about uncertain parameters; 4) only one price is in place in each trading period (which can be perfectly hedged with a forward contract); and 5) a solution for the resulting market equilibrium problem exists.The findings show that such equivalence vanishes when forward markets are missing or inaccessible (attributable in some electricity markets to the absence of demand-side participation). This article consequently suggests that requiring demand-side agents to sign forward contracts with generators might constitute an effective regulatory measure where no fully functional forward market is already in place.  相似文献   
10.
Corncob liquefaction in supercritical ethanol–water was performed with and without the addition of an alkali catalyst by direct addition or biomass impregnation in a 250-cm3 batch reactor. The effects of temperature, solvent and alkali addition on the biomass conversion level and oil yield were investigated to find the optimum condition. For non-catalytic liquefaction using a 1:1 (v/v) ethanol: water ratio, a maximum oil yield and conversion level of 49.0% and 93.4%, respectively, were obtained at 340 °C. For alkali catalytic liquefaction, the oil yield with KOH addition (57.5%) was higher than that from KOH-impregnated corncob liquefaction (43.3%). The oil from liquefaction with KOH addition had higher heating value (26.7–35.3 MJ kg−1) than the corncob (19.1 MJ kg−1). The dominant components of the obtained oil were found by GC/MS analysis to be aldehyde, ester, phenol derivatives and aromatic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号