首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6669篇
  免费   86篇
  国内免费   122篇
电工技术   4篇
综合类   340篇
化学工业   1261篇
金属工艺   30篇
机械仪表   33篇
建筑科学   70篇
矿业工程   75篇
能源动力   64篇
轻工业   15篇
水利工程   14篇
石油天然气   4759篇
无线电   10篇
一般工业技术   173篇
冶金工业   14篇
原子能技术   4篇
自动化技术   11篇
  2024年   6篇
  2023年   74篇
  2022年   96篇
  2021年   126篇
  2020年   145篇
  2019年   157篇
  2018年   92篇
  2017年   110篇
  2016年   166篇
  2015年   158篇
  2014年   477篇
  2013年   479篇
  2012年   486篇
  2011年   418篇
  2010年   336篇
  2009年   343篇
  2008年   357篇
  2007年   325篇
  2006年   274篇
  2005年   278篇
  2004年   303篇
  2003年   225篇
  2002年   192篇
  2001年   189篇
  2000年   146篇
  1999年   138篇
  1998年   133篇
  1997年   132篇
  1996年   152篇
  1995年   109篇
  1994年   74篇
  1993年   53篇
  1992年   41篇
  1991年   38篇
  1990年   25篇
  1989年   22篇
  1988年   2篇
排序方式: 共有6877条查询结果,搜索用时 312 毫秒
1.
2.
上证报中国证券网讯12月28日,中国石油《强非均质特超稠油开发关键技术及工业化应用》成果鉴定会在京举行。据悉,鉴定委员会由17位院士、专家组成。鉴定委员会表示,该成果针对超稠油开发动用和特稠油强非均质油藏大幅度提高采收率的世界级难题,通过多学科持续攻关,形成了适合陆相强非均质稠油开发热采理论技术体系,大幅度提高了采收率,降低了生产成本,建成了全球最大的优质环烷基稠油生产基地。  相似文献   
3.
针对目前蒸汽吞吐产量预测模型假设条件简单、普适性差等问题,一般采用测试法和类比法综合确定海上稠油油田蒸汽吞吐初期产量。由于目前海上油田通常只开展常规测试,无法直接获得热采开发初期产量。笔者提出海上稠油油田蒸汽吞吐初期产量确定新方法,建立蒸汽吞吐相对于常规开发的初期产量倍数预测模型,通过蒸汽吞吐产量倍数,将常规测试确定的产量转化为蒸汽吞吐产量。研究表明,蒸汽吞吐初期产量倍数主要受储集层渗透率、原油黏度、注入强度、蒸汽干度等因素影响,利用正交试验设计和多元回归等方法,建立海上稠油油田蒸汽吞吐初期产量倍数与油藏地质参数及注入参数之间的非线性预测模型,该模型经实际生产数据验证,预测误差小于5%,可靠性高,能够为海上稠油油田蒸汽吞吐初期产量的确定提供依据。  相似文献   
4.
火驱是稠油油藏继蒸汽吞吐后提高采收率的技术之一。储集层是决定火驱开发效果的根本因素,而温度是影响火驱储集层变化的主要因素。以辽河油田高3-6-18井为例,通过模拟实验,得到火驱过程中不同阶段的样品,分析了火驱前后储集层的变化,建立了研究区火驱过程中储集层变化模式。研究表明:结焦带的储集层物性较差,Fe(OH)3沉淀物、CaCO3沉淀物和沥青质沉积堵塞孔喉,长石向黏土矿物转化,同时生成大量的硅质胶结物,破坏了粒间孔与粒内溶孔,使孔隙度和渗透率降低,物性变差;燃烧带和已燃带的储集层物性较好,Fe(OH)3和CaCO3沉淀物分解、沥青质沉积的裂解,使孔喉增大,黏土矿物的烧结作用使高岭石向蒙脱石、伊利石转化,同时存在蒙脱石向伊利石的转化,使以黏土矿物为主的粒间填隙物发生不同程度的体积收缩,颗粒和填隙物之间产生裂缝,并随温度升高,裂缝会明显加宽,孔喉增大且连通性变好,孔隙度与渗透率升高。  相似文献   
5.
高孔高渗的渤海S稠油油田采用水源井水修井后,漏失量大、产能恢复效果差。为了降低外来工作液对储层的损害,开发了保护储层的修井液体系。通过室内实验优选了配制前置液所用的边界膜清洗剂、降黏剂、阻垢剂和助排剂,评价了暂堵液的增黏性及其对岩心的封堵性能和破胶后岩心渗透率的恢复率。研究结果表明,配方为15%边界膜清洗剂GXXJ+1.5%降黏剂JN-01+0.5%阻垢剂ZG-02+1%助排剂ZP-01的前置液的洗油率、降黏率均达到90%以上,能够抑制钙镁垢形成,可将返排压力降低50%以上。配方为3%油溶性暂堵剂BH-ZD+0.7%增黏剂BH-VIS+3%破胶剂JPC(海水配制)的暂堵液在压力3.5数4 MPa、温度60℃的条件下封堵效果良好,破胶后岩心的渗透率恢复率在80%以上。采用该前置液加暂堵液体系修井能够有效预防有机质沉淀、油水乳化和无机垢堵塞等储层伤害。该体系已在S油田应用,修井后工作液漏失量低且产能恢复较好。  相似文献   
6.
稠油乳化反相点附近的稠油黏度较大,对于稠油开采及运输极为不利。通过考察温度、搅拌转速对稠油乳化反相点的影响,得到稠油乳状液适宜的制备条件;考察了水溶性降黏剂及油溶性降黏剂对稠油乳化反相点的影响,并从界面膜及药剂对沥青质作用角度分析了稠油乳化反相的机理。结果表明,在50℃、搅拌转速800 r/min的条件下制得的稠油乳状液的乳化反相点最大。水溶性降黏剂和油溶性降黏剂均会使稠油乳化反相点提前,但二者提前稠油乳化反相点的程度不同。随着降黏剂浓度的增大,水溶性降黏剂使稠油乳化反相点降低,由48%提前至35.6%;而油溶性降黏剂使稠油乳化反相点先减小后增大。水溶性降黏剂通过降低界面扩张模量和界面张力实现提前反相,而油溶性降黏剂主要通过降低界面扩张模量来实现反相;加入降黏剂前后沥青质的微观形貌表明,水溶性降黏剂对沥青质聚集体的破坏程度强于油溶性降黏剂,降黏剂主要通过降低沥青质所组成的界面膜强度来实现反相。  相似文献   
7.
随着稠油油藏的不断开发,越来越多的油层被井下作业措施等堵塞,影响到稠油井的正常生产。稠油堵塞后,近井地带的渗透率降低,生产强度下降,必须采取解堵技术措施,及时解除油层的堵塞状态,恢复油井的正常生产,获得最佳的产液量,达到稠油油藏开发的技术要求。  相似文献   
8.
在矿场即将实施轻质溶剂辅助水平井蒸汽驱开采薄层稠油油藏之际,选择用正己烷溶剂作为轻质溶剂,先采用二维物理模拟技术,研究了添加溶剂后蒸汽腔的展布规律和对生产动态的影响规律;之后,为进一步研究溶剂在蒸汽腔中的运移规律和对温度场、黏度场和含油饱和度场的影响规律,采用CMG公司的CMG-STARS模块,基于二维物理模型参数,对溶剂辅助蒸汽驱进行了数值模拟。研究表明:薄层稠油油藏在采用水平井蒸汽驱过程中添加单组分轻质溶剂能够有效降低蒸汽腔内部及蒸汽腔前缘的原油黏度,从而提高沿生产井方向的吸汽能力和驱油效率,与普通蒸汽驱对比,其具体表现为蒸汽腔体积大,沿注汽井方向扩展快,沿生产井方向扩展均匀,蒸汽前缘突破快,最终的波及范围大;生产过程中几乎无稳产阶段,且蒸汽前缘抵达生产井时产油速度达到峰值,之后高含水阶段发生汽窜且产油量小,最终驱替效率高。因此,添加溶剂辅助蒸汽驱相对于常规蒸汽驱可以有效降低地下稠油黏度,并且提高蒸汽在地层中的波及范围,从而高效地开发薄层稠油油藏。  相似文献   
9.
冀东浅层稠油油藏开展CO_2吞吐取得了较好的增油效果,但长期注CO_2导致的井筒腐蚀等生产问题日益凸显;N_2是优良的增能介质,且来源广、性能稳定,将二者结合形成复合气体,是冀东油田CO_2吞吐后的储备技术之一。为对比不同注气介质的增油效果,分别设计了5种摩尔比例的CO_2/N_2复合气体(1∶0(纯CO_2)、4∶1、7∶3、1∶1和0∶1(纯N_2)),并开展了相应的注气膨胀实验和注气吞吐物理模拟实验。注气膨胀实验结果表明,CO_2与稠油的作用能力要明显好于N_2;复合气体与原油的作用能力介于纯CO_2与纯N_2之间,且随着复合气中CO_2比例的增加,其溶解降黏和溶解膨胀的效应越明显;当注气量超过20 mol%、摩尔比例超过7∶3时,复合气体对稠油的降黏率可达40%以上。注气吞吐实验结果表明,体积比2∶1(摩尔比4∶1)的复合气体经过4轮吞吐后可提高采收率17.03%,接近纯CO_2的增油效果;该比例的复合气体可实现CO_2溶解降黏和N_2增能的协同效应,有效提高稠油油藏采收率。图7表2参27  相似文献   
10.
现有稠油底水油藏水锥变化计算公式均未考虑由于长期大液量冲刷引起的储层物性变化,导致计算出的水驱波及体积偏大。为了准确描述高含水阶段水锥和水脊的变化规律及剩余油分布,考虑了长期大液量冲刷下储层物性的变化,运用等值渗流阻力法对波及区内外储层渗透率进行了等效表征,建立了考虑物性时变的稠油底水油藏水锥、水脊变化数学模型。分析可知,储层物性时变对水锥的影响十分显著,相同水锥宽度下,考虑物性时变的数学模型计算的波及高度较不考虑该因素的现有公式的计算值要小46.3%。将考虑物性时变的数学模型的计算结果与邻井测井解释结果对比,相对误差仅5.3%。根据渤海Q油田现有井距条件下利用考虑物性时变的稠油底水油藏水锥、水脊的接触关系,总结出了该油田3种井间剩余油分布模式,并针对不同模式给出了相应的挖潜措施。矿场先导试验证实了基于储层物性时变的稠油底水油藏高含水期精细挖潜技术的可靠性、有效性,为稠油底水油藏高含水阶段挖潜剩余油提供了技术支持。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号