首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   30篇
  国内免费   6篇
电工技术   1篇
综合类   13篇
化学工业   110篇
金属工艺   7篇
机械仪表   38篇
建筑科学   211篇
矿业工程   77篇
能源动力   9篇
轻工业   90篇
水利工程   5篇
石油天然气   3篇
无线电   23篇
一般工业技术   71篇
冶金工业   99篇
原子能技术   11篇
自动化技术   10篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   11篇
  2017年   14篇
  2016年   15篇
  2015年   11篇
  2014年   25篇
  2013年   33篇
  2012年   37篇
  2011年   79篇
  2010年   79篇
  2009年   80篇
  2008年   59篇
  2007年   54篇
  2006年   26篇
  2005年   32篇
  2004年   33篇
  2003年   26篇
  2002年   22篇
  2001年   16篇
  2000年   12篇
  1999年   19篇
  1998年   16篇
  1997年   11篇
  1996年   7篇
  1995年   7篇
  1993年   8篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有778条查询结果,搜索用时 15 毫秒
1.
Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.  相似文献   
2.
This study investigates the adsorption of As(III) on β-cyclodextrin modified hydrous ferric oxide (HCC). This is characterized by XRD, FESEM, AFM, XPS, BET, surface site concentration and FTIR. The modification of hydrous ferric oxide (HFO) surface by β-cyclodextrin provides ample OH groups which in turn increase As(III) adsorption on HCC compared to HFO. The adsorption remains almost constant in pH range 3–8 which decreases at higher pH (>8) and followed monolayer and pseudo first order kinetics. It is spontaneous at 303 K with increasing entropy and decreasing enthalpy. Thus HCC is found to be more efficient adsorbent than HFO.  相似文献   
3.
Arsenic removal from water was investigated using activated carbon. The chemical activated carbon (CAC) prepared using H3PO4 from jute stick largely featured micropore structure with surface functional groups, while meso- and macropore structures were mainly developed in physical activated carbon (PAC). The CAC and PAC reduced arsenic concentration to 45 and 55 μg L−1, respectively, from 100 μg L−1 while iron-loaded CAC reduced to 3 μg L−1, which is lower than the upper permissible limit (10 μg L−1). The micropore structure of CAC along with complexation affinity of iron species towards arsenic species attributed to enhanced separation of arsenic.  相似文献   
4.
The aim of this investigation was to determine the occurrence of As, Cu, Cr and Zn in the soil at an abandoned wood preservation unit and to examine some possible extractants for the contaminants in the soil. The mean As content of the contaminated surface soils (0-10 cm) was 186 mg kg(-1), where as the mean concentrations of Cu, Cr and Zn in soils from the contaminated area were 26, 29 and 91 mg kg(-1), respectively. The elevated As content in the mineral soils is related to adsorption of inorganic As phases in the fine grained fractions, which are characterised by large surface area and high positive surface charge under the current acidic conditions. Cu and Cr were found to be rather mobile, which is reflected in their lower abundance in soils and significant accumulation in sediments in the drainage leaving the area. The fine fraction of the soil (<0.125 mm) has an average metal content increased by nearly 34% as compared to the <2-mm fraction conventionally used for the analysis and assessment of soil contamination. The <2-mm fraction constitutes approximately 65% of the total weight while the fine fraction (<0.125 mm) constitutes approximately 10%. These facts, taken together, are essential for the choice of remediation measures. Oxalate solutions have been tested as extractants for soil remediation. Dark acid oxalate extraction dissolves the amorphous Al- and Fe-oxides and hydroxides and mobilises the adsorbed inorganic As species. Oxalate also acts as a ligand for the cationic heavy metals, releasing them from exchangeable sites. With a three-step sequential leaching, up to 98-99% of the metals could be removed. At lower concentrations and higher pH, the leaching decreased to approximately 70%.  相似文献   
5.
Sources and temporal dynamics of arsenic in a New Jersey watershed, USA   总被引:1,自引:0,他引:1  
We examined potential sources and the temporal dynamics of arsenic (As) in the slightly alkaline waters of the Wallkill River, northwestern New Jersey, where violations of water-quality standards have occurred. The study design included synoptic sampling of stream water and bed sediments in tributaries and the mainstem, hyporheic-zone/ground water on the mainstem, and seasonal and diurnal sampling of water at selected mainstem sites. The river valley is bordered by gneiss and granite highlands and shale lowlands and underlain by glacial deposits over faulted dolomites and the Franklin Marble. Ore bodies in the Marble, which have been mined for rare Zn ore minerals, also contain As minerals. Tributaries, which drain predominantly forested and agricultural land, contributed relatively little As to the river. The highest concentrations of As (up to 34 mug/L) emanated from the outlet of man-made Lake Mohawk at the river's headwaters; these inputs varied substantially with season--high during warm months, low during cold months, apparently because of biological activity in the lake. Dissolved As concentrations were lower (3.3 microg/L) in river water than those in ground water discharging into the riverbed (22 microg/L) near the now-closed Franklin Mine. High total As concentrations (100-190 mg/kg) on the <0.63 microm fraction of bed sediments near the mine apparently result from sorption of the As in the ground-water discharge as well as from the As minerals in the streambed. As concentrations in river water were diluted during high stream flow in fall, winter and spring, and concentrated during low flow in summer. In unfiltered samples from a wetlands site, diurnal cycles in trace-element concentrations occurred; As concentrations appeared to peak during late afternoon as pH increased, but Fe, Mn, and Zn concentrations peaked shortly after midnight. The temporal variability of As and its presence at elevated concentrations in ground water and sediments as well as streamwater demonstrate the importance of (1) sampling a variety of media and (2) determining the time scales of As variability to fully characterize its passage through a river system.  相似文献   
6.
Due to the enactment of a stricter drinking water standard for arsenic in the United States, larger quantities of arsenic will be treated resulting in larger volumes of treatment residuals. The current United States Environmental Protection Agency recommendation is to dispose spent adsorbent residuals from arsenic treatment into non-hazardous municipal solid waste (MSW) landfills. The potential of microorganisms to alter the speciation affecting the mobility of arsenic in the disposal environment is therefore a concern. The purpose of this paper was to evaluate the potential of an anaerobic microbial consortium to biologically mobilize arsenate (As(V)) adsorbed onto activated alumina (AA), a common adsorbent used for treating arsenic in drinking water. Three anaerobic columns (0.27 l) packed with 100 g dry weight of AA containing 0.657 mg adsorbed As(V) (expressed as arsenic) per gram dry weight were continuously flushed with synthetic landfill leachate for 257 days. The fully biologically active column was inoculated with methanogenic anaerobic sludge (10 g volatile suspended solids l(-1) column) and was operated with a mixture of volatile fatty acids (VFA) in the feed (2.5 g chemical oxygen demand l(-1) feed). At the end of the experiment, 37% of the arsenic was removed from the column, of which 48% was accounted for by arsenical species identified in the column effluent. The most important form of arsenic eluted was arsenite (As(III)), accounting for nearly all of the identified arsenic in periods of high mobilization. Additionally, two methylated metabolites, methylarsonic acid and dimethylarsinic acid were observed. Mobilization of arsenic is attributed to the biological reduction of As(V) to As(III) since literature data indicates that As(III) is more weakly adsorbed to AA compared to As(V). Batch and continuous assays confirmed that VFA, present in landfill leachates, served as an electron donating substrate supporting enhanced rates of As(V) reduction to As(III). Two control columns, lacking inoculum and/or VFA in the feed displayed low mobilization of arsenic compared to the fully biologically active column. Therefore, leachates generated in MSW landfills could potentially result in the biologically catalyzed mobilization of arsenic from As(V)-laden drinking water residuals.  相似文献   
7.
Arsenic removal by iron-modified activated carbon   总被引:6,自引:0,他引:6  
Iron-impregnated activated carbons have been found to be very effective in arsenic removal. Oxyanionic arsenic species such as arsenate and arsenite adsorb at the iron oxyhydroxide surface by forming complexes with the surface sites. Our goal has been to load as much iron within the carbon pores as possible while also rendering as much of the iron to be available for sorbing arsenic. Surface oxidation of carbon by HNO3/H2SO4 or by HNO3/KMnO4 increased the amount of iron that could be loaded to 7.6-8.0%; arsenic stayed below 10 ppb until 12,000 bed volumes during rapid small-scale tests (RSSCTs) using Rutland, MA groundwater (40-60 ppb arsenic, and pH of 7.6-8.0). Boehm titrations showed that surface oxidation greatly increased the concentration of carboxylic and phenolic surface groups. Iron impregnation by precipitation or iron salt evaporation was also evaluated. Iron content was increased to 9-17% with internal iron-loading, and to 33.6% with both internal and external iron loading. These iron-tailored carbons reached 25,000-34,000 bed volumes to 10 ppb arsenic breakthrough during RSSCTs. With the 33.6% iron loading, some iron peeled off.  相似文献   
8.
Kuo YM  Liu CW  Lin KH 《Water research》2004,38(1):148-158
The back-propagation (BP) artificial neural network (ANN) is applied to forecast the variation of the quality of groundwater in the blackfoot disease area in Taiwan. Three types of BP ANN models were established to evaluate their learning performance. Model A included five concentration parameters as input variables for seawater intrusion and three concentration parameters as input variables for arsenic pollutant, respectively, whereas models B and C used only one concentration parameter for each. Furthermore, model C used seasonal data from two seasons to train the ANN, whereas models A and C used only data from one season. The results indicate that model C outperforms models A and B. Model C can describe complex variation of groundwater quality and be used to perform reliable forecasting. Moreover, the number of hidden nodes does not significantly influence the performance of the ANN model in training or testing.  相似文献   
9.
Dhoble RM  Lunge S  Bhole AG  Rayalu S 《Water research》2011,45(16):4769-4781
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate.  相似文献   
10.
Bacteria are widespread, abundant, geochemically reactive components of aquatic environments. In particular, iron-oxidizing bacteria, are involved in the oxidation and subsequent precipitation of ferrous ions. Due to this property, they have been applied in drinking water treatment processes, in order to accelerate the removal of ferrous iron from groundwaters. Iron also exerts a strong influence on arsenic concentrations in groundwater sources, while iron oxides are efficient adsorbents in arsenic removal processes. In the present study, the removal of arsenic (III and V), during biological iron oxidation has been investigated. The results showed that both inorganic forms of arsenic could be efficiently treated, for the concentration range of interest in drinking water (50-200microg/L). In addition, the oxidation of trivalent arsenic was found to be catalyzed by bacteria, leading to enhanced overall arsenic removal, because arsenic in the form of arsenites cannot be efficiently sorbed onto iron oxides. This method comprises a cost competitive technology, which can find application in treatment of groundwaters with elevated concentrations of iron and arsenic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号