首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68130篇
  免费   6292篇
  国内免费   2539篇
电工技术   3612篇
技术理论   10篇
综合类   3742篇
化学工业   18098篇
金属工艺   3381篇
机械仪表   1915篇
建筑科学   6137篇
矿业工程   1732篇
能源动力   9257篇
轻工业   2996篇
水利工程   818篇
石油天然气   2883篇
武器工业   234篇
无线电   3681篇
一般工业技术   9879篇
冶金工业   4571篇
原子能技术   778篇
自动化技术   3237篇
  2024年   139篇
  2023年   1445篇
  2022年   2137篇
  2021年   2473篇
  2020年   2481篇
  2019年   2171篇
  2018年   1951篇
  2017年   2285篇
  2016年   2531篇
  2015年   2429篇
  2014年   4069篇
  2013年   4106篇
  2012年   4933篇
  2011年   6175篇
  2010年   4497篇
  2009年   4296篇
  2008年   3510篇
  2007年   4143篇
  2006年   3621篇
  2005年   2957篇
  2004年   2473篇
  2003年   2224篇
  2002年   1759篇
  2001年   1371篇
  2000年   1199篇
  1999年   934篇
  1998年   833篇
  1997年   593篇
  1996年   553篇
  1995年   472篇
  1994年   399篇
  1993年   311篇
  1992年   254篇
  1991年   201篇
  1990年   171篇
  1989年   112篇
  1988年   91篇
  1987年   85篇
  1986年   60篇
  1985年   126篇
  1984年   101篇
  1983年   91篇
  1982年   83篇
  1981年   18篇
  1980年   34篇
  1979年   8篇
  1978年   6篇
  1976年   6篇
  1959年   6篇
  1951年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Carbon monoxide (CO)—gaseous or released by CO-RMs—both possess antiplatelet properties; however, it remains uncertain whether the mechanisms involved are the same. Here, we characterise the involvement of soluble guanylate cyclase (sGC) in the effects of CO—delivered by gaseous CO–saturated buffer (COG) and generated by CORM-A1—on platelet aggregation and energy metabolism, as well as on vasodilatation in aorta, using light transmission aggregometry, Seahorse XFe technique, and wire myography, respectively. ODQ completely prevented the inhibitory effect of COG on platelet aggregation, but did not modify antiplatelet effect of CORM-A1. In turn, COG did not affect, whereas CORM-A1 substantially inhibited energy metabolism in platelets. Even though activation of sGC by BAY 41-2272 or BAY 58-2667 inhibited significantly platelet aggregation, their effects on energy metabolism in platelets were absent or weak and could not contribute to antiplatelet effects of sGC activation. In contrast, vasodilatation of murine aortic rings, induced either by COG or CORM-A1, was dependent on sGC. We conclude that the source (COG vs. CORM-A1) and kinetics (rapid vs. slow) of CO delivery represent key determinants of the mechanism of antiplatelet action of CO, involving either impairment of energy metabolism or activation of sGG.  相似文献   
2.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
3.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
4.
Novel lead-free (1-x)Ba0·9Ca0·1Ti0·9Zr0·1O3-xSrNb2O6 ceramics were synthesized via a two-step high energy ball milling process. The evolution of microstructural properties, phase transformation, and energy storage characteristics was comprehensively investigated to assess the applicability of material in multi-layered ceramic capacitors. The substitution of SrNb2O6 (SNO) in Ba0·9Ca0·1Ti0·9Zr0·1O3 (BTCZ) has resulted in substantial improvement in materials density along with a small increase in the grain size of the synthesized ceramic. A thorough microstructural investigation indicates an excellent dispersibility and compatibility between BTCZ and SNO phases. With an increase in SNO substitution, a transition from typical ferroelectric to relaxor ferroelectric has been observed, which has led to a significantly slimmer ferroelectric loop along with frequency dispersive dielectric properties. The optimized composition (i.e., x = 0.10) exhibits an ultra-high recoverable energy density of 2.68 J/cm3 along with a moderately high energy efficiency of 83.4%. Further, SNO substituted samples have also shown an enhancement in breakdown strength. The improvement in energy storage performance and breakdown strength of SNO substituted BTCZ composites are mainly attributed to relatively homogeneous grain morphology, optimum grain size, microstructural density, and improved grain boundary interface.  相似文献   
5.
The electromagnetic materials are featured by good magnetic permeability and dielectric constant characteristics, which are of significant importance in solving the pollution problem of electromagnetic. In this study, after the complete of the use of sol-gel method, argon gas was then introduced for calcination, and eventually a new type of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites was synthesized after the above mentioned procedures. The synthesized MWCNTs were able to be adsorbed on the surface of Ni0.5Zn0.5Nd0.04Fe1.96O4 and could form a good conductive work of 3D. Also, the effect of additional MWCNTs on microwave absorption properties of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites were also observed in this study. The results indicate that the additional MWCNTs function to significantly improve the microwave absorption property of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4. Through altering the amount of MWCNTs, the microwave attenuation performance and impedance matching coefficient of this electromagnetic materials can be effectively improved. The S2 sample presented a minimum reflection loss of ?35.05 dB when its thickness reached 1.6 mm, meanwhile, the effective absorption bandwidth achieved 4.55 GHz. The prepared composites perform well in microwave absorption, which can attribute to the reasonable ratio of composites as well as its interaction with both of the magnetic and dielectric components. This research paved the way for novel ideas to be put in the electromagnetic absorption materials with high-efficient.  相似文献   
6.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
7.
Technical development in electronic devices is frequently stifled by their insufficient capacity and cyclic stability of energy-storage devices. The nano-structured materials have sensational importance for providing novel and optimized combination to overcome exiting boundaries and provide efficient energy storage systems. Metal hydroxide materials with high capacity for pseudo-capacitance properties have grabbed special attention. Lately, the blend of nickel and cobalt hydroxides has been considered as a favorable class of metallic hydroxide materials owing to their comparatively high capacitance and exceptional redox reversibility. The sulfonated carbon nanotube fluid (SCNTF) was prepared by the ion exchange method to be utilized as the exceptional templates due to astonishing specific surface area, ensuring the maximum utilization of the active material. The CoNi-layered double hydroxides (LDHs)/SCNTF core-shell nanocomposite was prepared by the simple solvothermal method. Structural analysis showed that the composite material had the high conductance of carbon materials, the pseudo-capacitance characteristics of metal hydroxides, and porous structure, which facilitates the ion shuttle when the electrolyte reacts with the active material. Electrochemical analysis results showed that CoNi-LDHs/SCNTF had excellent rate performance, reversible charge-discharge properties and cycle stability. It exhibited an extreme specific capacity of 1190.5 F g?1 at a current density of 1 A g?1; whereas specific capacity remained 953.7 F g?1 at the current density was 10 A g?1. In addition, the capacity retention rate after 5000 charge-discharge cycles at a current density of 20 A g?1 was 81.0%. The results indicated that the CoNi-LDHs/SCNTF core-shell nanocomposite material is cost efficient and an effective substitute in energy storage applications.  相似文献   
8.
9.
10.
《Ceramics International》2021,47(18):25177-25200
Porous TiO2-based catalysts have recently received remarkable attention in the field of energy conversion systems, including hydrogen/oxygen evolution reaction, oxygen/nitrogen reduction reaction, and photodegradation of pollutants owing to their unique structure, large surface area, and good chemical stability. In this report, we review existing research on porous TiO2-based catalysts for energy conversion systems during the past four years. First, the advantages of porous TiO2-based catalysts are introduced. Next, the synthetic approaches in developing porous TiO2-based catalysts are summarized. The different types of energy conversion systems based on porous TiO2-based catalysts are then presented. Finally, the challenges and future perspectives in synthesizing porous TiO2-based catalysts are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号