首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6283篇
  免费   72篇
  国内免费   49篇
电工技术   39篇
综合类   108篇
化学工业   1379篇
金属工艺   214篇
机械仪表   90篇
建筑科学   373篇
矿业工程   68篇
能源动力   575篇
轻工业   426篇
水利工程   39篇
石油天然气   321篇
武器工业   8篇
无线电   1448篇
一般工业技术   895篇
冶金工业   162篇
原子能技术   45篇
自动化技术   214篇
  2024年   6篇
  2023年   34篇
  2022年   59篇
  2021年   178篇
  2020年   73篇
  2019年   77篇
  2018年   71篇
  2017年   245篇
  2016年   265篇
  2015年   251篇
  2014年   493篇
  2013年   365篇
  2012年   431篇
  2011年   542篇
  2010年   443篇
  2009年   487篇
  2008年   403篇
  2007年   337篇
  2006年   244篇
  2005年   191篇
  2004年   193篇
  2003年   165篇
  2002年   109篇
  2001年   82篇
  2000年   99篇
  1999年   102篇
  1998年   80篇
  1997年   87篇
  1996年   66篇
  1995年   47篇
  1994年   51篇
  1993年   28篇
  1992年   22篇
  1991年   24篇
  1990年   11篇
  1989年   7篇
  1988年   11篇
  1987年   9篇
  1986年   8篇
  1985年   5篇
  1984年   2篇
  1979年   1篇
排序方式: 共有6404条查询结果,搜索用时 15 毫秒
1.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
2.
The organic pollutants in water have been a great environment challenges to human beings, and photocatalytic degradation is an effective method to solve this problem. In this paper, the Rh-loaded cobalt ferrite CoFe2O4 (CFO) nanoparticles have been successfully synthesized by in situ photodeposition of Rh nanoparticles onto the porous CFO particles as the photocatalysts. After incorporating Rh nanoparticles, the CFO/Rh composite has a higher specific surface area and is more efficient in charge separation than the bare CFO. The photocatalytic efficiency of decomposing Malachite Green (MG) is improved from 70% over the bare CFO to 97% over the optimized CFO/Rh in 60 min. The CFO/Rh sample also demonstrates its durability for the degradation of MG in 5 photocatalytic reaction cycles. Additionally, hydroxyl radicals (?OH) and superoxide radicals (?O2?) are proved to be the crucial reactive species during the photocatalytic degradation of MG with CFO/Rh, evidenced by the active species capture experiments. This work provides a useful approach to enhance the photocatalytic activity of semiconductors for degrading organic dyes.  相似文献   
3.
Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to rapid development of social economy. Iron (Fe), being an important element, has been found effective in enhancing plant tolerance against biotic and abiotic stresses. The present study investigated the extent to which different levels of Ferrous sulphate (FeSO4) modulated the Cd tolerance of rice (Oryza sativa L.), when maintained in artificially Cd spiked regimes. A pot experiment was conducted under controlled conditions for 146 days, by using natural soil, mixed with different levels of CdCl2 [0 (no Cd), 0.5 and 1 mg/kg] together with the exogenous application of FeSO4 at [0 (no Fe), 1.5 and 3 mg/kg] levels to monitor different growth, gaseous exchange characteristics, oxidative stress, antioxidative responses, minerals accumulation, organic acid exudation patterns of O. sativa. Our results depicted that addition of Cd to the soil significantly (P < 0.05) decreased plant growth and biomass, gaseous exchange parameters, mineral uptake by the plants, sugars (soluble, reducing, and non-reducing sugar) and altered the ultrastructure of chloroplasts, plastoglobuli, mitochondria, and many other cellular organelles in Cd-stressed O. sativa compared to those plants which were grown without the addition of Cd in the soil. However, Cd toxicity boosted the production of reactive oxygen species (ROS) by increasing the contents of malondialdehyde (MDA), which is the indication of oxidative stress in O. sativa and was also manifested by hydrogen peroxide (H2O2) contents and electrolyte leakage to the membrane bounded organelles. Although, activities of various antioxidative enzymes like superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidants like phenolics, flavonoid, ascorbic acid, anthocyanin and proline contents increased up to a Cd level of 0.5 mg/kg in the soil but were significantly diminished at the highest Cd level of 1 mg/kg in the soil compared to those plants which were grown without the addition of Cd in the soil. The negative impacts of Cd injury were reduced by the application of FeSO4 which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, minerals uptake together with diminished exudation of organic acids as well as oxidative stress indicators in roots and shoots of O. sativa by decreasing Cd retention in different plant parts. These results shed light on the effectiveness of FeSO4 in improving the growth and upregulation of antioxidant enzyme activities of O. sativa in response to Cd stress. However, further studies at field levels are required to explore the mechanisms of FeSO4-mediated reduction of the toxicity of not only Cd, but possibly also other heavy metals in plants.  相似文献   
4.
In this work, we have elucidated the pH-induced structural evolution of bismuth molybdate photocatalyst based on a hydrothermal synthesis route. With increasing the pH value of precursor solution, pure Bi2MoO6 was synthesized at pH 2–5, Bi2MoO6-Bi4MoO9 mixture was obtained at pH 7–9, pure Bi4MoO9 was obtained at pH 11, and pure α-Bi2O3 was derived at pH 13. The as-derived samples mainly present particle-like shapes but with different particle sizes (except the observation of Bi2MoO6 nanowires in sample S-pH9). The photocatalytic performances between the samples were compared via the degradation of methylene blue (MB) under irradiation of simulated sunlight. The Bi2MoO6 sample synthesized at pH 2 exhibited the highest photodegradation performance (η(30 min) = 89.8 %, kapp = 0.05007 min?1) among the samples. The underlying photocatalytic mechanism and degradation pathways of MB were systematically analyzed. Moreover, the photodegradation performance of the Bi2MoO6 photocatalyst was further evaluated at different acidic-alkaline environments as well as in degrading various color and colorless organic pollutants, which provides an important insight into its practical application.  相似文献   
5.
In this paper, a salinity gradient solar pond (SGSP) is used to harness the solar energy for hydrogen production through two cycles. The first cycle includes an absorption power cycle (APC), a proton exchange membrane (PEM) electrolyzer, and a thermoelectric generator (TEG) unit; in the second one, an organic Rankine cycle (ORC) with the zeotropic mixture is used instead of APC. The cycles are analyzed through the thermoeconomic vantage point to discover the effect of key decision variables on the cycles’ performance. Finally, NSGA-II is used to optimize both cycles. The results indicate that employing ORC with zeotropic mixture leads to a better performance in comparison to utilizing APC. For the base mode, unit cost product (UCP), exergy, and energy efficiency when APC is employed are 59.9 $/GJ, 23.73%, and 3.84%, respectively. These amounts are 47.27 $/GJ, 29.48%, and 5.86% if ORC with the zeotropic mixture is utilized. The APC and ORC generators have the highest exergy destruction rate which is equal to 6.18 and 10.91 kW. In both cycles, the highest investment cost is related to the turbine and is 0.8275 $/h and 0.976 $/h for the first and second cycles, respectively. In the optimum state the energy efficiency, exergy efficiency, UCP, and H2 production rate of the system enhances 42.44%, 27.54%,15.95%, and 38.24% when ORC with the zeotropic mixture is used. The maximum H2 production is 0.47 kg/h, and is obtained when the mass fraction of R142b, LCZ temperature, pumps pressure ratio, generator bubble point temperature are 0.603, 364.35 K, 2.12, 337.67 K, respectively.  相似文献   
6.
Manganese oxides of different crystalline structures: α-MnO2, δ-MnO2, α,γ-MnO2 and Mn2O3; were treated with the organic compounds picolinic acid, ethylenediamine and pyridine; and were applied as catalysts in the chemical water oxidation reaction using Ce(IV) ammonium nitrate as sacrificial oxidant. The treatment led to modifications in the oxides properties, such as reduction of the particle size, increase of surface area and partial reduction of Mn4+ to Mn3+ for the Mn(IV) oxides, or of Mn3+ to Mn2+ for Mn2O3, because of favored interactions of the organic molecules with the lattice planes with higher d spacing. Oxygen evolution reaction (OER) tests showed the superior catalytic activity of the treated Mn(IV) oxides, for instance α,γ-MnO2-en presented TOF five times higher than pure α,γ-MnO2. The increase in surface area as well as the higher Mn3+ content caused by the treatment of the Mn(IV) oxides were correlated with the improvement in the OER catalytic activity.  相似文献   
7.
Although the demand for organic food is growing globally, the mainstream consumption of organic food is far less. The present study attempts to understand the underlying reasons for consumer resistance toward consuming organic food using the theoretical framework of innovation resistance theory (IRT). The study further examines the association between different consumer barriers and purchase decisions (purchase intentions, ethical consumption intentions, and choice behaviour) at different levels of buying involvement and environmental concerns. The collected data, consisting of 452 consumers, were analyzed by structural equation modeling approach. The results showed that value barrier shared a negative association with purchase intentions and ethical consumption intentions. Ethical consumption and purchase intention were found to have a direct influence on choice behaviour. Additionally, the relationship between ethical consumption intention and choice behaviour is mediated by purchase intention. However, no significant differences have emerged based on the level of buying involvement and environment concerns. The findings of the study provide insight into public policymakers, marketers, suppliers, and consumer associations by enhancing their current understanding of buying behaviour of the growing organic food community.  相似文献   
8.
In recent years, public attention has been increasingly attracted to solving two inextricably linked problems - preventing the depletion of natural resources and protecting the environment from anthropogenic pollution. The annual consumption of livestock waste for biogas production is about 240 thousand m3 per year, which is 0.17% of the total manure produced at Russian agricultural enterprises. At present, the actual use of organic waste potentially suitable for biogas production is 2–3 orders of magnitude lower than the existing potential for organic waste. Currently, hydrogen energy is gaining immense popularity in the world due to the problem of depletion of non-renewable energy sources - hydrocarbons, and environmental pollution caused by their increasing consumption. Of particular interest is the dark process of producing hydrogen-containing biogas in the processing of organic waste under anaerobic conditions, which allows you to take advantage of both energy production and solving the problem of organic waste disposal. An energy analysis of a two-stage anaerobic liquid organic waste processing system with the production of hydrogen- and methane-containing biogases based on experimental data obtained in a laboratory plant with increased volume reactors was performed. The energy efficiency of the system is in the range of 1.91–2.74. Maximum energy efficiency was observed with a hydraulic retention time of 2.5 days in a dark fermentation reactor. The cost of electricity to produce 1 m3 of hydrogen was 1.093 kW·h with a hydraulic retention time of 2.5 days in the dark fermentation reactor. When the hydraulic retention time in the dark fermentation reactor was 1 day, the specific (in ratio to the processing rate of organic waste) energy costs to produce of 1 m3 of hydrogen were minimal in the considered hrt range, and amounted to 26 (W/m3 of hydrogen)/(m3 of waste/day). Thus, the system of two-stage anaerobic processing of liquid organic waste to produce hydrogen and methane-containing biogases is an energy-efficient way to both produce hydrogen and process organic waste.  相似文献   
9.
Geopolymers, composed of an amorphous three-dimensional inorganic network and synthesized by the activation of a solid alumino-silicate precursor with an alkaline activating solution, have attracted increasing attention because of their environmental benefits and favorable characteristics. This review deals with the development of organic/inorganic composite materials made by adding organic liquids into inorganic geopolymer matrices. Firstly, the incorporation processing approaches are presented and are divided into three categories: (i) Direct incorporation, (ii) Pre-emulsification (iii) Solid impregnation. Their main advantages and drawbacks are discussed in relation to the aimed properties. Secondly, this review highlights that geopolymers are low-cost candidates allowing technologically significant applications, through the incorporation of various organic liquids. Aside from the well-studied immobilization of industrial waste streams commonly known as stabilization/solidification (S/S), the development of highly porous geopolymer foams and the design of reinforced organic/inorganic composite matrices are being notably investigated. This review aims at summarizing the main published results, and fostering further investigations into innovative uses of organic liquids incorporated into geopolymers for a wide range of applications.  相似文献   
10.
Full-fluorescence organic light-emitting diodes (FOLEDs) with low cost and high efficiency are imperious demands for commercial process in flat panel display and lighting products. We fabricated a series of FOLEDs employing C545T and DCJTB as doped dyes and different exciplex blends as cohosts. The results proved that reverse intersystem crossing (RISC) efficiency of exciplex cohost has a significant effect on the device performance. Devices with TAPC:PIM-TRZ as cohost which possessed the highest RISC efficiency showed the best results. The green FOLEDs exhibited the maximum external quantum efficiencies (EQEs) approaching to 20%, the red FOLEDs exhibited EQEs over 10% and all the EQE roll-offs are less than 10% at 1000 cd m−2, which are among the best reported results so far, suggesting these exciplex cohosts are promising for FOLEDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号