首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1254篇
  免费   14篇
  国内免费   15篇
电工技术   4篇
综合类   12篇
化学工业   626篇
金属工艺   5篇
机械仪表   11篇
建筑科学   28篇
矿业工程   10篇
能源动力   355篇
轻工业   23篇
石油天然气   75篇
武器工业   2篇
无线电   16篇
一般工业技术   91篇
冶金工业   6篇
原子能技术   14篇
自动化技术   5篇
  2023年   24篇
  2022年   24篇
  2021年   34篇
  2020年   43篇
  2019年   41篇
  2018年   35篇
  2017年   35篇
  2016年   27篇
  2015年   31篇
  2014年   55篇
  2013年   61篇
  2012年   34篇
  2011年   119篇
  2010年   100篇
  2009年   73篇
  2008年   46篇
  2007年   61篇
  2006年   66篇
  2005年   62篇
  2004年   51篇
  2003年   71篇
  2002年   49篇
  2001年   20篇
  2000年   15篇
  1999年   27篇
  1998年   25篇
  1997年   7篇
  1996年   9篇
  1995年   14篇
  1994年   10篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1944年   1篇
排序方式: 共有1283条查询结果,搜索用时 46 毫秒
1.
Stop flow lithography (SFL) combines aspects of microfluidic and photolithography to continuously fabricate particles with uniform planar shapes as dictated by a mask. In this work we aim to expand the palette of materials suitable for SFL processing by investigating the use of UV-crosslinkable preceramic polymers to make ceramic particles. A commercially available methacrylated-polysiloxane was used as the preceramic polymer and was mixed with 2.5 wt% Irgacure 651 photoinitiator. A simple SFL system was assembled to continuously fabricate UV-crosslinked preceramic polymer particles in the shape of hexagons, triangles, and gears with diameters ranging from 100 to 200 μm and thicknesses of 74 μm +/- 4 μm. Particles were harvested from the excess preceramic solution, cleaned and then pyrolyzed at 1000 °C to transform them into silicon oxycarbide ceramic particles. Particle shape was maintained during pyrolysis despite a ~80 % linear shrinkage due to the removal of acryl and methyl side groups, as confirmed via FTIR. After pyrolysis the outer diameters of the SiOC particles ranged from 20 to 40 μm with thicknesses of 10 μm–12 μm. Pyrolyzed particles were successfully recovered and dispersed in water. This work demonstrates a robust path for the fabrication of ceramic particles with specific shapes from preceramic polymers via SFL.  相似文献   
2.
Transition metal-nitrogen-carbon (M-N-C) materials have been the focus of scientists’ efforts to address the rising need for earth-abundant materials solutions for energy technology and decarbonization of the economy. They are viewed as one of the most promising candidates to replace platinum group metal (PGM) catalysts in the fuel cell and energy conversion fields, including the application of oxygen reduction reaction, carbon dioxide reduction reaction, and nitrogen reduction reaction. In the effort to improve M-N-C materials properties and achieve atomic dispersity of the transition metal in the carbonaceous matrix, a re-pyrolysis process has been proposed. This secondary heat treatment process of already obtained primary pyrolysis-derived M-N-C materials has been widely reported to substantially improve the electrochemical performance and operational stability of the catalysts. Here, we report a systematic investigation of this process used on samples of templated M-N-C catalysts to obtain state-of-the-art catalysts via in situ heating X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), and X-ray computed tomography (CT) characterization methods. It is found that the re-pyrolysis of M-N-C materials could result in the partial amorphization of the carbonaceous substrate. It causes the rearrangement and transformation of multitudinous N moieties, leading to optimization of their morphological display and association with atomically dispersed transition metal dopants. Ultimately, the re-pyrolysis results in an increase in uniformity of the active Fe-Nx sites distribution without the formation of nano-crystalline phases (metallic or carbide) and with overall preservation of the morphology of the carbonaceous framework achieved during the first formative pyrolysis step of the templated synthesis. These observations provide confirmation that empirically established re-pyrolysis is recommended to be used on all M-N-C materials despite the different synthesis routes to obtain a practical advanced catalytic material.  相似文献   
3.
The main objective of the present investigation is to conduct the performance, combustion and emission analysis of CI engine operated using hydrogen enriched syngas (pyrolytic gas) and biodiesel (pyrolytic oil) as dual fuel mode condition. Both the pyrolytic oil and syngas is obtained from single feedstock delonix regia fruit pod through pyrolysis process and then pyrolytic oil is converted into biodiesel through esterification. Initially biomass is subjected to thermal degradation at various pyrolysis temperature ranges like 350–600 °C. During the pyrolysis process syngas, pyrolytic oil and char are produced. The syngas is directly used in the CI engine and pyrolytic oil is converted into biodiesel and then used in the CI engine. The pyrolytic oil and syngas is subjected to FTIR and GC/TCD analysis respectively. The syngas analysis confirms the presence of various gases like H2, CH4, CO2, CO and C2H4 in different proportions. The various proportions of the syngas is mainly depending upon the reactor temperature and moisture content in the biomass. The syngas composition varies with increase in the temperature and at 400 °C, higher amount of hydrogen is present and its composition are H2 28.2%, CO is 21.9%, CH4 is 39.1% and other gases in smaller amounts. The biodiesel of B20 and syngas of 8lpm produced from the same feedstock are considered as test sample fuels in the CI engine under dual fuel mode operation to study the performance and emission characteristics. The study reveals that BTE has slight increase than diesel of 1.5% at maximum load. On the another hand emission like CO, HC and smoke are reduced by 15%,25% and 32% respectively at full load condition, whereas NOx emission is increased at all loads in the range of 10–15%. Therefore B20+syngas of 8lpm can be used as an alternative fuel in CI engine without any modification and major products from pyrolysis process with waste biomass is fully used as fuel in the CI engine.  相似文献   
4.
In this work, we study the gasification of pellets produced, after densification, by blending olive mill solid wastes, impregnated or not by olive mill waste water, and pine sawdust under different steam/nitrogen atmospheres. The charcoals necessary for the gasification tests were prepared by pyrolysis using a fixed bed reactor. The gasification technique using steam was chosen in order to produce a hydrogen-enriched syngas. Gasification tests were performed using macro-thermogravimetric equipment. Tests were carried out at different temperatures (750 °C, 800 °C, 820 °C, 850 °C and 900 °C), and at different atmospheres composed by nitrogen and steam at different percentages (10%, 20% and 30%). Results show that the mass variation profiles is similar to the usual lingo-cellulosic gasification process. Moreover, the increase of temperatures or water steam partial pressures affects positively the rate of conversion and the char reactivity by accelerating the gasification process. The increase of the gasification yields demonstrates the promise of using olive mill by-products as alternative biofuels (H2 enriched syngas).  相似文献   
5.
《能源学会志》2020,93(4):1624-1633
Depletion of fossil fuels and stringent emission norms focus attention to discover an evitable source of alternative fuel in order to attribute a significant compensation on conventional fuels. Besides, waste management policies encourage the valorization of different wastes for the production of alternative fuels in order to reduce the challenges of waste management. In this context, pyrolysis has become an emerging trend to convert different wastes into alternate fuel and suitable to be used as a substitute fuel for CI engines. The current investigation provides a sustainable and feasible solution for waste plastic management by widening the gap between global plastic production and plastic waste generation. It investigates the performance and emission of a single cylinder DI four stroke diesel engine using waste plastic oil (WPO) derived from pyrolysis of waste plastics using Zeolite-A as catalyst. Engine load tests have been conducted taking waste plastic oil and subsequently a blend of waste plastic oil by 10%, 20%, and 30% in volume proportions with diesel as fuel. The performance of the test engine in terms of brake thermal efficiency is found marginally higher and brake specific fuel consumption comparatively lowest for 20% WPO-diesel blend than pure diesel. The NOx and HC emission is found lower under low load condition and became higher by increasing the load as compared to diesel. Fuel exergy was significantly increasing after blending of WPO with pure diesel, but exergetic efficiency of the blended fuels followed the reverse trend. However, increase in load of the engine improved the exergetic efficiency. The 20% WPO–diesel blended fuel is found suitable to be used as an alternative fuel for diesel engine.  相似文献   
6.
《能源学会志》2020,93(4):1449-1459
Oil shortage and awareness of environment pollution leads to the extensive use of biodegradable starch-based materials against synthetic plastics. The accumulated wastes of these plastics takes more time for natural recycling and the process is complex. Therefore the best option of recycling would be to convert these polymers into a source of energy by pyrolysis. So to understand the pyrolytic behaviour, kinetics of such waste plastics is studied by using thermogravimetric analysis at different heating rates of 10 °C, 20 °C, 40 °C, 60 °C, 80 °C and 100 °C in nitrogen atmosphere followed by characterization of the pyrolysis products. The kinetic parameters are obtained for two major stages of decomposition in two different temperature ranges 250–620 °C and 620–855 °C by iso-conversional methods such as Friedman, Coats-Redfern, FWO and Kissinger methods. The regression coefficient data (>0.9) of kinetic plots obtained for different methods best fits to the kinetic equation. Empirical formula of the compound is determined by ultimate analysis is CH2.214S0.0018O0.6910. Proximate analysis gives the idea of volatile component which is74.33%. The range of average value of activation energy is 120.7013 kJ/mol to 140.7707 kJ/mol for the biodegradable plastic plate with different conversion (0.1–0.6) and (0.1–0.3) respectively at two different temperatures. The pyrolysis products obtained using a semi-batch reactor are characterized to know their composition and other properties.  相似文献   
7.
《Ceramics International》2020,46(2):1297-1306
Three types of SiCf/SiC composites with a four-step three-dimensional SiC fibre preform and pyrocarbon interface fabricated via precursor infiltration and pyrolysis at 1100 °C, 1300 °C, and 1500 °C were heat-treated at 1300 °C under argon atmosphere for 50 h. The effects of the pyrolysis temperature on the microstructural and mechanical properties of the SiCf/SiC composites were studied. With an increase in the pyrolysis temperature, the SiC crystallite size of the as-fabricated composites increased from 3.4 to 6.4 nm, and the flexural strength decreased from 742 ± 45 to 467 ± 38 MPa. After heat treatment, all the samples exhibited lower mechanical properties, accompanied by grain growth, mass loss, and the formation of open pores. The degree of mechanical degradation decreased with an increase in the pyrolysis temperature. The composites fabricated at 1500 °C exhibited the highest property retention rates with 90% flexural strength and 98% flexural modulus retained. The mechanism of the mechanical evolution after heat treatment was revealed, which suggested that the thermal stability of the mechanical properties is enhanced by the high crystallinity of the SiC matrix after pyrolysis at higher temperatures.  相似文献   
8.
The activation and utilization of hydrogen energy is an effective method to solve the global energy crisis and environmental pollution. Herein, biomass-derived Fe–N–C catalysts for H2 activation were synthesized via the imitation of sponge cake baking. The sample pyrolyzed at 500 °C (Fe–N–C-500) presented the well-defined cake-like architecture with uniform distribution of Fe3O4 nanoparticles (NPs). Doping N species dispersed around metallic NPs in high density. Fe–N–C-500 exhibited excellent performance in the catalytic hydrogenation of nitrobenzene. The activity of Fe–N–C-500 depended on Fe3O4 NPs and pyridinic N, rather than Fe–N. The typical core-shell structure deemed vital for H2 activation in previous reports was not necessary. Notably, water could significantly promote the H2 activation, which might establish the communication between hydrogen molecules adsorbed on Fe3O4 NPs and doping N species through hydrogen bonds. Moreover, low temperature pyrolytic Fe–N–C-500 exhibited excellent stability and provided a promising potential for selective hydrogenation of nitroarenes or alkyne by regulating the reaction condition. This work provides an innovative approach to construct heterogeneous catalysts for H2 activation.  相似文献   
9.
《能源学会志》2020,93(4):1341-1353
This study focused on the effects of pyrolysis temperature on the structural characteristics and combustion properties of low rank coal. The combustion performance of semi-coke at different temperatures was studied by using low-temperature pyrolysis technology and non-isothermal thermogravimetric analysis. The variation of functional groups and carbon structure was quantitatively analyzed. The results show that the temperature has a significant effect on the semi-coke structure and flammability. In the middle and low temperature pyrolysis stage, the removal of water, volatile matter and functional groups is mainly carried out, and the degree of condensation and graphitization of carbon atoms is not obvious. The semi-coke performance with a pyrolysis temperature of 1023K is close to that of anthracite. The pyrolysis process is accompanied by the destruction of carbonaceous and the formation of mesopores, which affects the combustion performance. As the temperature increases, the flammability of the semi-coke is lowered, and the chemical structure of the semi-coke is a major factor affecting the flammability. The method of Coast-Redfern integration was used to calculate the kinetic parameters of the semi-coke. As the pyrolysis temperature increases, the activation energy of the combustion reaction increases, which is consistent with the trend of combustion performance change.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号