首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   853篇
  免费   32篇
  国内免费   15篇
电工技术   5篇
综合类   21篇
化学工业   267篇
金属工艺   80篇
机械仪表   12篇
建筑科学   43篇
矿业工程   76篇
能源动力   24篇
轻工业   2篇
水利工程   3篇
石油天然气   15篇
无线电   4篇
一般工业技术   61篇
冶金工业   270篇
原子能技术   2篇
自动化技术   15篇
  2023年   15篇
  2022年   18篇
  2021年   18篇
  2020年   17篇
  2019年   9篇
  2018年   26篇
  2017年   21篇
  2016年   28篇
  2015年   22篇
  2014年   38篇
  2013年   46篇
  2012年   32篇
  2011年   60篇
  2010年   22篇
  2009年   40篇
  2008年   35篇
  2007年   58篇
  2006年   46篇
  2005年   46篇
  2004年   31篇
  2003年   45篇
  2002年   29篇
  2001年   27篇
  2000年   25篇
  1999年   30篇
  1998年   26篇
  1997年   19篇
  1996年   21篇
  1995年   14篇
  1994年   10篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有900条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):22699-22711
An integrated experimental and thermodynamic modeling study of the phase equilibria in the ‘CuO0.5’-MgO-SiO2 system in equilibrium with liquid Cu metal has been undertaken to better understand the reactions between MgO-based refractories and liquid slag in copper converting and refining processes. New experimental phase equilibria data at 1250–1680 °C were obtained for this system using a high-temperature equilibration of synthetic mixtures with predetermined compositions in silica ampoules or magnesia crucibles, a rapid quenching technique, and electron probe X-ray microanalysis of the equilibrated phase compositions. The system has been shown to contain primary phase fields of cristobalite (SiO2), tridymite (SiO2), pyroxene/protoenstatite (MgSiO3), olivine/forsterite (Mg2SiO4), periclase (MgO), and cuprite (Cu2O). Three regions of 2-liquid immiscibility were found—two in the high-silica range of compositions above the cristobalite primary phase field (close to ‘CuO0.5’-SiO2 and MgO–SiO2 binaries) and one in the low-SiO2, high-‘CuO0.5’ compositional region above the periclase and olivine phase fields. The results obtained in this study indicate that silica in high-copper refining slags likely led to olivine and pyroxene phase formation, increased solubility of MgO in liquid slag, and decline in the performance of MgO-based refractories. New experimental data were used in the development of a thermodynamic database describing this pseudo-ternary system.  相似文献   
2.
《Ceramics International》2022,48(14):19806-19817
Aluminosilicates are the base precursors that combined with alkali solutions manufacture geopolymers. A wide variability of aluminosilicate precursors can be found in the market worldwide, which may be an issue when proposing single designs. The goal of this study is to compare the use of different precursors in the hardening mechanisms of geopolymers. For this, two types of metakaolin (a low (MKLR) and a high-reactive (MKHR) one), and partial replacements made with fly-ash (FA) and blast furnace slag (BFS) are used in SiO2/Al2O3 = 4.00, Na2O/SiO2 = 0.25, and H2O/Na2O = 11.00 fixed design ratios. Fresh state (viscosity and squeeze flow), transient state (Vicat needle and sonic strength), and hardening measurements (compression tests under room and high temperature conditions), were used, supported by chemical analysis (calorimetry and SAM/HCl extraction) and materials characterization (particle analysis, density, BET and XRD). In general, the reactivity, chemical composition, and morphology of each precursor, as well as solid/liquid portions of each mix were major factors influencing the hardening process. The use of MKLR achieved shorter setting times and enhanced viscosities due to its particles larger surface area, solid/liquid ratios, and unreactive portions, reaching the highest values of strength and diminished thermomechanical performance. Partial substitutions made with FA and BFS increased the amorphous part of the binder, increasing also its flowability, setting time, and its stability to thermal exposure. The geopolymer made with MKHR presented the lowest viscosity and longer setting time due to its almost constant dissolution rate, attributed to its enhanced reactivity from highly amorphous parts and diminished solid-to-liquid ratio mixture. Therefore, the use of varied aluminosilicates significantly modifies the materials properties, leading to different potential applications that should be considered when designing geopolymers.  相似文献   
3.
4.
In this investigation, low-cement castables were prepared using 70% alumina grog aggregates obtained from crushed alumina brick waste. The aggregates were thermally treated at 1550 °C for 3 h. Four types of low-cement castables were prepared with various types of aggregates (alumina grog with or without thermal treatment) and fillers (with or without zircon addition), and they were evaluated in terms of their physical, thermal, and chemical properties. Microstructural analysis via scanning electron microscopy (SEM) was performed on the castables before and after slag attack. Compared to the other fabricated castables, the thermally treated alumina grog castables with zircon showed better physical properties, such as a higher bulk density, cold crushing strength, and modulus of rupture and a lower apparent porosity and water absorption. In addition, they had a higher positive linear thermal expansion, refractoriness under load, permanent linear change, and hot modulus of rupture. The results of the SEM with energy dispersive X-ray analysis of the prepared castables confirmed that the mullite and anorthite phases were predominant when zircon was not added and the zircon–mullite phase additionally appeared upon the incorporation of zircon. A quantitative elemental analysis via X-ray fluorescence spectroscopy was employed to determine the composition of the castables. X-ray diffraction analysis showed that the alumina grog castables had a high mullite and low anorthite content, and the thermally treated alumina grog had a high anorthite, low mullite, and high zircon content. The improvement in the mechanical and thermo-mechanical properties of the castables with thermally treated alumina grog and added zircon can be attributed to the formation of the zircon–mullite phase with a low mullite phase content.  相似文献   
5.
The growth of demand for concrete raises concerns about the consumption of natural resources and ordinary Portland cement. Geopolymer composites show promise as a sustainable alternative for conventional cement concrete. Considering the wide range of potential geopolymer composites applications (including suitability for transportation infrastructure, underwater applications, repair and rehabilitation of structures as well as recent developments in 3D printing), the desired fresh and mechanical properties of the geopolymer composite may vary between applications: for example, rapid setting can be a merit for certain applications and a demerit for others. Therefore, the desired fresh and mechanical properties (e.g., workability, setting time, compressive strength, etc.) can be controlled for a given geopolymer source material through its partial substitution by natural or by-product materials. Recognizing the critical role of various replacement materials in enhancing the potential applications of geopolymer composites, the present review was undertaken to quantify and understand the effect of partial replacement by fly ash, metakaolin, kaolin, red mud, slag, ordinary Portland cement, and silica fume on the setting time, workability, compressive strength and flexural strength of various source materials addressed in the literature. The review also provides insights into research gaps in the field to promote future research.  相似文献   
6.
现有浮标式自动排渣放水器在使用过程中,煤渣含量较高时,自动排渣放水器内部为多相混合介质,影响浮标动作,严重时会使自动排渣放水器失效。针对所存在的问题,设计了一种无浮标式自动排渣放水器。对这一自动排渣放水器的结构和工作原理进行了介绍,对自动排渣放水器状态和移动容器受力进行了分析,并进行了试验验证。  相似文献   
7.
《Ceramics International》2020,46(1):452-459
Carbon-bonded magnesia and magnesia-alumina bricks are the state of the art lining materials of the sidewalls and the bottom of steel ladles. Industrial trial tests revealed, that a new generation of MgO–MgAl2O4–C bricks, where pre-reacted spinel is added in form of a new calcium magnesium aluminate (CMA) raw material, exhibit a longer service life caused by an enhanced corrosion resistance due to the formation of a protective slag layer. In terms of this work, laboratory corrosion tests have been performed in order to mimic the protective slag layer formation and to study the kinetics of the formation. It has been found that the formation highly depends on the amount of iron present in the melt, which leads to the precipitation of the brownmillerite-phase. Furthermore, the study was extended to force the formation of protective slag layers of different composition which are reliable at higher temperatures and wider temperature ranges by targeted adaption of the brick composition. Cup tests showed that there is a potential to manipulate the composition of a protective slag layer by targeted adaption of the brick composition. Especially MgO, Al2O3, FexOy, and SiO2 from the brick or slag enrich at the slag/refractory-interface.  相似文献   
8.
Al–Cr slag is the solid waste generated by the smelting of Cr metal. It presents a range of environmental hazards. This study addressed the corrosion resistance of Al–Cr slag containing chromium–corundum refractories to slags with different basicity. Herein, we provide suggestions for the use of Cr–corundum of different basicity in kilns. Al–Cr slag, brown fused Al2O3, and chrome green were used as the raw materials, with pure calcium aluminate cement being used as a binder. The brick samples, prepared using different blends of chrome green and corundum, were fired at 1600?°C, and subsequently subjected to a slag corrosion test. After corrosion by slag of different basicity, the phase composition and microstructure of the sample were analyzed by X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy. There were two major findings. First, Cr–corundum brick made from Al–Cr slag has a better slag corrosion resistance than that made from Cr2O3 and brown fused Al2O3. Second, Cr–corundum brick made from Al–Cr slag has superior corrosion resistance to slag with a CaO:SiO2 ratio of 2:1.  相似文献   
9.
The effect of activator type, concentration and slag composition on the strength and stability properties of paste backfill (CPB) of high-sulphide tailings using alkali-activated slag (AAS) as binder (7 wt.%) were investigated in this study. Acidic and neutral (AS–NS) slags were activated with liquid sodium silicate (LSS) and sodium hydroxide (SH) at 6–10 wt.% concentrations. Ordinary Portland cement (OPC) results were used for comparison. The strength development was found to remarkably improve with increasing the concentration from 6 to 8 wt.%. Further increase in concentration did not enhance the strength. SH was determined to produce higher early-age strength whilst LSS produced higher long-term strengths as an indication of slag selectivity for activators. More extensive gypsum formation was observed at lower concentrations in SEM/EDS studies. An increase in Na2O concentration raised the activator consumption. High concentrations also led to poorly crystallized C–S–H gel, loose structure and drying shrinkage cracks especially in NS–SH samples. A reduction in total porosity up to 20% was obtained in AAS samples compared to OPC. Amorphous structure, chemical modulus ratio and/or basicity index (BI) values were seen to control the pozzolanic reactivity, and therefore, the alkali-activation and hardening process.  相似文献   
10.
In this article, the effects of raw materials’ composition on fresh behavior, reaction kinetics, mechanical properties and microstructure of alkali activated slag–fly ash–limestone blends are investigated. The results indicate that, with the increasing content of fly ash and limestone, the slump flow increases. The setting times are shortened when increasing the slag content, while both fly ash and limestone show a negligible influence. The reaction process is slightly accelerated by the presence of limestone due to the extra provided nucleation sites, but the reaction process is mainly governed by the slag. The slag content exhibits a dominant role on strength in this ternary system, while for a constant slag content, the compressive strength increases with the increasing limestone content up to 30%. The microstructure analysis shows that the gel characteristics are independent of the limestone powder content. The presence of limestone in initially high Ca and Al conditions does not lead to the formation of additional crystalline phases, which is different from Portland cement systems. Both physically and chemically bound water contents are slightly increased when limestone powder is incorporated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号