首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2984篇
  免费   64篇
  国内免费   21篇
电工技术   32篇
综合类   94篇
化学工业   992篇
金属工艺   52篇
机械仪表   36篇
建筑科学   210篇
矿业工程   195篇
能源动力   428篇
轻工业   132篇
水利工程   15篇
石油天然气   123篇
武器工业   2篇
无线电   34篇
一般工业技术   223篇
冶金工业   277篇
原子能技术   152篇
自动化技术   72篇
  2024年   2篇
  2023年   46篇
  2022年   72篇
  2021年   78篇
  2020年   70篇
  2019年   76篇
  2018年   65篇
  2017年   58篇
  2016年   57篇
  2015年   72篇
  2014年   122篇
  2013年   156篇
  2012年   109篇
  2011年   243篇
  2010年   185篇
  2009年   170篇
  2008年   132篇
  2007年   136篇
  2006年   158篇
  2005年   132篇
  2004年   117篇
  2003年   102篇
  2002年   102篇
  2001年   72篇
  2000年   87篇
  1999年   76篇
  1998年   53篇
  1997年   55篇
  1996年   46篇
  1995年   44篇
  1994年   36篇
  1993年   39篇
  1992年   20篇
  1991年   16篇
  1990年   15篇
  1989年   8篇
  1988年   11篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
排序方式: 共有3069条查询结果,搜索用时 62 毫秒
1.
《Ceramics International》2022,48(17):24157-24191
Great progress in the development of low-cost ceramic membranes from alternative materials have been achieved recently towards various application especially water and wastewater treatment. However, their significance has not been fully recognized and understood especially in term of their microstructural analysis such as formation of grain growth and microcracks. This review paper summarizes fabrication method, alternative materials, microstructure, wettability, mechanical properties and application of low-cost ceramic membrane. The fabrication method including slip casting, tape casting, extrusion, pressing method and phase inversion technique are described. Alternative materials used in low-cost ceramic membrane fabrication are discussed and categorized into clays, agricultural waste, industrial waste and animal bone waste. The mechanisms of morphology formation, microstructure and wettability properties are analysed. Modification strategies for the surface of low-cost ceramic membrane are discussed, and classified into modification for separation application, modification for photocatalytic application and modification for membrane distillation and membrane contactor system. Modification improves the membrane structure by changing the pore size, porosity and wettability properties of low-cost ceramic membranes. Mechanical properties of low-cost ceramic membranes are also discussed in detail towards several mechanism, like grain growth phenomenon and formation of microcracks which also considered as membrane defects. Grain growth phenomenon can be divided into normal and abnormal grain growth. Meanwhile, formation of microcracks could be occurred in single-phase polycrystalline ceramics that have anisotropic grains or biphasic polycrystalline grains. The application of low-cost ceramic membrane in seawater desalination, oily wastewater treatment, heavy metal adsorption, textile separation and photocatalytic application are reviewed. Finally, some possible opportunities and challenges for further development of low-cost ceramic membrane are pointed out.  相似文献   
2.
3.
Non-noble metal catalyst with high catalytic activity and stability towards oxygen reduction reaction (ORR) is critical for durable bioelectricity generation in air-cathode microbial fuel cells (MFCs). Herein, nitrogen-doped (iron-cobalt alloy)/cobalt/cobalt phosphide/partly-graphitized carbon ((FeCo)/Co/Co2P/NPGC) catalysts are prepared by using cornstalks via a facile method. Carbonization temperature exerts a great effect on catalyst structure and ORR activity. FeCo alloys are in-situ formed in the catalysts above 900 °C, which are considered as the highly-active component in catalyzing ORR. AC-MFC with FeCo/Co/Co2P/NPGC (950 °C) cathode shows the highest power density of 997.74 ± 5 mW m?2, which only declines 8.65% after 90 d operation. The highest Coulombic efficiency (23.3%) and the lowest charge transfer resistance (22.89 Ω) are obtained by FeCo/Co/Co2P/NPGC (950 °C) cathode, indicating that it has a high bio-electrons recycling rate. Highly porous structure (539.50 m2 g?1) can provide the interconnected channels to facilitate the transport of O2. FeCo alloys promote charge transfer and catalytic decomposition of H2O2 to ?OH and ?O2?, which inhibits cathodic biofilm growth to improve ORR durability. Synergies between metallic components (FeCo/Co/Co2P) and N-doped carbon energetically improve the ORR catalytic activity of (FeCo)/Co/Co2P/NPGC catalysts, which have the potential to be widely used as catalysts in MFCs.  相似文献   
4.
《Ceramics International》2022,48(2):1494-1511
The application of insulation materials in buildings and energy storage facilities is gaining global attention to reduce energy consumption, heat loss, and CO2 emissions. Given the high insulation performance, glass foam is gaining popularity replacing combustible, high energy-consuming, and costly conventional insulation materials. The industrial process of glass foam manufacturing is an energy-consuming and non-ecofriendly process which requires the annealing of glass around its melting temperature. Therefore, researchers have developed powder sintering and gel casting methods to sinter glass foam mix at a temperature slightly above its glass transition point. However, research findings on these two methods are scattered because of the different parameters being used by researchers. The properties and performances of glass foam depend on the processing parameters, especially on the materials design and sintering conditions. Therefore, this study aimed to provide a comprehensive review on the key parameters for material selection and sintering of glass foams and provide necessary guidelines for the best practice and a direction for future research. Moreover, this review covers the current strategies and challenges associated with the powder sintering and gel casting methods including their sustainability and environmental performance.  相似文献   
5.
杨涛 《现代矿业》2020,36(7):44-46
随着社会经济的发展,如何合理、有序、经济、环保地处理弃土弃渣已成为强降雨地区土石方项目亟需解决的问题。而对于雨林地区土石方工程往往需要布设大面积的排土场进行弃土弃渣,弃土弃渣存在“量大、集中”等特点。为保证弃土有效容量,排土场往往设置在沟谷中,雨林地区排土场如何保证地基处理、渗流层施工、分层填筑碾压是坝体施工质量控制的关键所在。以厄瓜多尔米拉多铜矿采矿工业场地工程项目为例,该项目存在土石方开挖工程量大,项目面临雨季长、高雨频等突出气候特点。项目排土场设计为碾压堆石坝,坝体整体高度84.8 m,坝体填筑石方达27.8万m3。简要介绍了该工程1 095 m排土场坝体施工的特点和难点,叙述坝体施工过程中采取的主要关键技术,为类似的工程施工提供借鉴。  相似文献   
6.
Waste glass powder was used as a low cost precursor for production of colloidal nanosilica for the first time. The process includes production of wet silica gel and thermal peptization of the wet gel. Purification of the glass powder and wet gel production were initiated by acid washing. The obtained powder was reacted with sodium hydroxide to produce wet silica gel. Type of the applied acid was examined in one factor at a time route. Temperature of the alkaline step and concentrations of the applied acid and base were investigated using Taguchi design of experiments. After finding the best combination of the investigated factor levels in production of the wet gel, time of the stabilization in thermal peptization was studied. Characterizations of the wet gel and colloidal silica were performed by XRF, DLS, FESEM, TEM, FTIR and N2 sorption evaluation. Accordingly pure and stable colloidal nanosilica (98.50%) with average particle size of 21.9?nm was produced from the glass powder successfully. Specific surface area of the dried porous optimum sample was 83.63?m2/g.  相似文献   
7.
8.
The activity of ceramic honeycombs with varying material composition and degree of utilization is compared on a suitable model gas in a test plant. The tested honeycombs are standard products that have not been surface‐treated in any way. A propane‐air mixture was fed to the test plant and then oxidized in a high‐temperature furnace. The analysis of the conversion rate over the reaction temperature showed remarkable differences in activity. The honeycomb with the most promising results was further investigated with the exhaust gas from the drying process of a waste treatment plant. Finally, the activity of this honeycomb was assessed in a large‐scale trial in an existing running regenerative thermal oxidizer.  相似文献   
9.
Arising out of the challenge for Local Authorities (LAs) to operate sustainable systems of work, is to avoid the creation of ill-health including the most significant causes of physical absence, musculoskeletal disorders (MSDs).The study's aim was to compare the reliability of the manual handling element of the Health and Safety Executives (HSEs) risk comparator tool for different domestic waste collection methods with self-reported pain via body-mapping and MSD ill health absence rates. Participatory body-mapping exercises were carried out in five LAs with one LA resurveyed, six months after the move from 35 and 50 L containers to a wheeled bin recycling service.The lowest levels of self-reported pain were for services designed with 240l wheeled bins excluding glass; the highest levels were for services that included 100l of garden waste sacks and recycling boxes. Industry data supports previous laboratory studies showing wheeled bins to be associated with less MSD outcomes than boxes, baskets and sacks.Triangulation of data established a statistically significant correlation of 0.85 (Pearson) between average pain-count (APC) and the mean MSD absence rates, with a strong correlation of 0.77 (Spearman) between APC and risk rating. The correlation is moderate, 0.49 (Spearman) between MSD absence and risk rating, reflecting possible intervening variables and a low participation rate by LAs.The contribution of this study is to improve the design of sustainable waste collection strategies to minimise MSD associated absence. In the absence of reliable absence data, body mapping should be used as a proxy method of assessing MSD risk.  相似文献   
10.
A hydrogen liquefaction concept with an innovative configuration and a capacity of 4 kg·s-1 (345.6 t·d-1) is developed. The concept involves an ammonia absorption refrigeration system for the pre-cooling of hydrogen and MR streams from 25 ℃ to -30 ℃. The ammonia absorption refrigeration system is fed by exhaust gases of the Parand gas power plant that are normally dissipated to the environment with a temperature of 546 ℃. The simulation is performed by Aspen HYSYS V9.0, using two separate equations of state for simulating hydrogen and MR streams to gain more accurate results especially for ortho-para conversion. Results show that conversion enthalpy estimated by Aspen HYSYS, fits very well to the experimental data. Determining the important independent variables and composition of MRs are done using trial and error procedure, a functional and straightforward method for complicated systems. The minimum temperature limit in the cooling section is lowered, and an ortho-para converter is implemented in this section. The proposed concept performs well from energy aspects and leads to COP and SEC equal to 0.271 and 4.54 kW·h·kg-1, respectively. The main advantage of this study is in the low SEC, eliminating the losses of the distribution network, and improving the ability of the hydrogen liquefaction for energy storage in off-peak times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号