首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10505篇
  免费   1228篇
  国内免费   882篇
电工技术   1330篇
综合类   660篇
化学工业   3371篇
金属工艺   501篇
机械仪表   233篇
建筑科学   236篇
矿业工程   72篇
能源动力   178篇
轻工业   451篇
水利工程   61篇
石油天然气   168篇
武器工业   53篇
无线电   2069篇
一般工业技术   2105篇
冶金工业   175篇
原子能技术   231篇
自动化技术   721篇
  2024年   44篇
  2023年   260篇
  2022年   296篇
  2021年   385篇
  2020年   387篇
  2019年   441篇
  2018年   389篇
  2017年   472篇
  2016年   428篇
  2015年   423篇
  2014年   445篇
  2013年   688篇
  2012年   690篇
  2011年   656篇
  2010年   457篇
  2009年   596篇
  2008年   588篇
  2007年   679篇
  2006年   620篇
  2005年   504篇
  2004年   523篇
  2003年   436篇
  2002年   347篇
  2001年   276篇
  2000年   248篇
  1999年   182篇
  1998年   168篇
  1997年   138篇
  1996年   116篇
  1995年   107篇
  1994年   92篇
  1993年   77篇
  1992年   65篇
  1991年   73篇
  1990年   39篇
  1989年   74篇
  1988年   36篇
  1987年   15篇
  1986年   19篇
  1985年   40篇
  1984年   30篇
  1983年   28篇
  1982年   26篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
2.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   
3.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   
4.
Dielectric tunability has been extensively investigated in ferroelectric materials, which exhibit a negative tunability of dielectric permittivity in an external electric field. In contrast, positive tunability is rare and has been reported only in a few antiferroelectric materials. We present positive (and negative) tunability in the titanite, CaTiSiO5. The dielectric property of CaTiSiO5 was measured up to an extraordinarily high electric field of 40 MV/m. A nonlinear polarization field loop with no hysteresis was obtained. The dielectric permittivity of εr ~ 25 increases up to εr ~ 40 at 20 MV/m and room temperature. Although titanite has an antipolar structure and is expected to be “antiferroelectric,” its dielectric response in high electric fields up to ~40 MV/m differs from that of conventional antiferroelectrics. We demonstrate that the phase-transition temperature and dielectric tunability could be modulated through the chemical substitution of Ca1−xLaxTiSi1−xAlxO5, in which the destabilization of the long-range antipolar order is revealed by transmission electron microscopy analysis. These results indicate that the observed dielectric response to an electric field may originate from the unique features of the antipolar and domain structures in CaTiSiO5.  相似文献   
5.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
6.
The most important polymer film used in commercial capacitors is biaxially oriented polypropylene (BOPP), which could be produced by sequentially or simultaneously biaxial orientation after the melt-extrusion. In order to disclose the influence of the stretching technique on the properties of films, the BOPP films with varied thickness were fabricated by sequential and simultaneous orientation, respectively. Compared to the sequentially biaxially stretched films, the crystal grains in the simultaneously biaxially stretched films are more isotropically dispersed. As temperature increases, all the BOPP films exhibit similar dielectric constant, and the simultaneous films have much lower dielectric loss thanks to the finer blended crystalline and amorphous phases. When the film thickness is smaller than 5 μm, the breakdown field strength, energy density and discharging time of the simultaneous films can be increased by at least 10% comparing to the sequential ones, which is very important for reducing the volume of the film capacitors. All the results suggest the simultaneously biaxial orientation mode shows significant advantages in producing thin BOPP films with better mechanical and electrical properties.  相似文献   
7.
The morphotropic composition of the lead-free solid solution between Na0.5Bi0.5TiO3 and BaTiO3 (0.94 Na0.5Bi0.5TiO3-0.06 BaTiO3 or NBT-6BT) is of particular interest for the next generation of high-temperature capacitors but remains plagued by the diversity of dielectric properties reported in the literature. In order to explain the apparent inconsistencies among the reported dielectric properties of NBT-6BT, we examine the influence of stoichiometry, phase separation, and metallization method. We show that the nominal stoichiometry has a crucial effect, since increasing the nominal Na/Bi ratio increases conductivity and dielectric losses (tan δ). It also increases the real part of the permittivity (ε’) and the frequency dispersion of both ε’ and tan δ, thereby altering the shape of the evolution with temperature of the dielectric properties. Moreover it increases the depolarization temperature (Td) and decreases the temperature of maximum permittivity (Tm). Phase separation also occurs during the synthesis of NBT-6BT as Na evaporation leads to the formation of secondary Ba-containing phases. We report that these phases can have a positive impact on the dielectric properties: a moderate volume fraction (2.5 to 3.0%) and average grain surface (0.9 to 3.0 µm2) of these secondary Ba-containing phases increase the relative permittivity, decrease the dielectric losses, and increase the insulation resistance. We also show that the metallization method impacts the dielectric properties and therefore may contribute to the differences between various reports. The dielectric properties of NBT-6BT samples are measured during successive heating/cooling cycles and reveal that the permittivity value is lower during the first heating when silver paste, even cured, is used. These three components contribute to explaining the diversity of the reported dielectric properties of NBT-6BT.  相似文献   
8.
The aim of this study was to develop high dielectric constant flexible polymers with a highly efficient and cost‐effective approach using acrylonitrile butadiene rubber (NBR) as the polymer matrix and barium titanate (BT) as the high dielectric constant filler. The BT powder was synthesized with a solid‐state reaction and was characterized using a particle size analyzer, XRD, SEM and Fourier transform infrared spectroscopy. NBR/BT composites were fabricated using an internal mixer with various BT loadings up to 160 phr. The influence of BT loading on the cure characteristics and mechanical, dynamic mechanical, thermal, dielectric and morphological properties was determined. The incorporation of BT in the NBR matrix shortened scorch time and increased delta torque. The mechanical properties, thermal stability and dielectric constant were greatly improved and increased with BT loading. The results suggest that the reinforcement effect was achieved due to strong hydrogen bonding or polar–polar interactions between NBR matrix and BT filler. This is further corroborated by the good dispersion of BT filler in the NBR matrix observed with SEM imaging. These findings can be applied to produce high‐performance dielectric elastomers. © 2020 Society of Industrial Chemistry  相似文献   
9.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   
10.
To theoretically explore amorphous materials with a sufficiently low dielectric loss, which are essential for next-generation communication devices, the applicability of a nonequilibrium molecular dynamics simulation employing an external alternating electric field was examined using alkaline silicate glass models. In this method, the dielectric loss is directly evaluated as the phase shift of the dipole moment from the applied electric field. This method enabled us to evaluate the dielectric loss in a wide frequency range from 1 GHz to 10 THz. It was observed that the dielectric loss reaches its maximum at a few THz. The simulation method was found to qualitatively reproduce the effects of alkaline content and alkaline type on the dielectric loss. Furthermore, it reasonably reproduced the effect of mixed alkalines on the dielectric loss, which was observed in our experiments on sodium and/or potassium silicate glasses. Alkaline mixing was thus found to reduce the dielectric loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号