首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29567篇
  免费   2437篇
  国内免费   1301篇
电工技术   1110篇
综合类   1829篇
化学工业   6951篇
金属工艺   1517篇
机械仪表   1234篇
建筑科学   1365篇
矿业工程   543篇
能源动力   1538篇
轻工业   2419篇
水利工程   357篇
石油天然气   1099篇
武器工业   607篇
无线电   1475篇
一般工业技术   3649篇
冶金工业   2770篇
原子能技术   310篇
自动化技术   4532篇
  2024年   40篇
  2023年   517篇
  2022年   579篇
  2021年   857篇
  2020年   849篇
  2019年   851篇
  2018年   770篇
  2017年   978篇
  2016年   1028篇
  2015年   980篇
  2014年   1427篇
  2013年   1925篇
  2012年   1634篇
  2011年   2000篇
  2010年   1511篇
  2009年   1622篇
  2008年   1491篇
  2007年   1809篇
  2006年   1771篇
  2005年   1589篇
  2004年   1405篇
  2003年   1201篇
  2002年   1076篇
  2001年   860篇
  2000年   686篇
  1999年   598篇
  1998年   603篇
  1997年   416篇
  1996年   306篇
  1995年   273篇
  1994年   270篇
  1993年   201篇
  1992年   206篇
  1991年   171篇
  1990年   143篇
  1989年   82篇
  1988年   87篇
  1987年   65篇
  1986年   67篇
  1985年   92篇
  1984年   62篇
  1983年   53篇
  1982年   45篇
  1981年   19篇
  1980年   25篇
  1979年   18篇
  1978年   10篇
  1977年   10篇
  1976年   6篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
2.
Tensile strain development in high-density polyethylene (HDPE) geomembrane (GMB) liner systems in landfills was numerically investigated. A new constitutive model for municipal solid waste (MSW) that incorporates both mechanical creep and biodegradation was employed in the analyses. The MSW constitutive model is a Cam-Clay type of plasticity model and was implemented in the finite difference computer program FLAC?. The influence of the friction angle of the liner system interfaces, the biodegradation of MSW, and the MSW filling rate on tensile strains were investigated. Several design alternatives to reduce the maximum tensile strain under both short- and long-term waste settlement were evaluated. Results of the analyses indicate that landfill geometry, interface friction angles, and short- and long-term waste settlement are key factors in the development of tensile strains. The results show that long-term waste settlement can induce additional tensile strains after waste placement is complete. Using a HDPE GMB with a friction angle on its upper interface that is lower than the friction angle on the underlying interface, increasing the number of benches, and reducing the slope inclination are shown to mitigate the maximum tensile strain caused by waste placement and waste settlement.  相似文献   
3.
The accurate knowledge of the elastic properties of single-stranded DNA (ssDNA) is key to characterize the thermodynamics of molecular reactions that are studied by force spectroscopy methods where DNA is mechanically unfolded. Examples range from DNA hybridization, DNA ligand binding, DNA unwinding by helicases, etc. To date, ssDNA elasticity has been studied with different methods in molecules of varying sequence and contour length. A dispersion of results has been reported and the value of the persistence length has been found to be larger for shorter ssDNA molecules. We carried out pulling experiments with optical tweezers to characterize the elastic response of ssDNA over three orders of magnitude in length (60–14 k bases). By fitting the force-extension curves (FECs) to the Worm-Like Chain model we confirmed the above trend:the persistence length nearly doubles for the shortest molecule (60 b) with respect to the longest one (14 kb). We demonstrate that the observed trend is due to the different force regimes fitted for long and short molecules, which translates into two distinct elastic regimes at low and high forces. We interpret this behavior in terms of a force-induced sugar pucker conformational transition (C3′-endo to C2′-endo) upon pulling ssDNA.  相似文献   
4.
5.
The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.  相似文献   
6.
The electrochemical interactions between aluminum alloy 7075 and low-carbon steels under gelled electrolytes were studied. Such electrolytes provided the opportunity to investigate both thick and thin electrolyte systems. The electrolyte was chemically modified to visually track the acidic fronts during the anodic reaction and the subsequent hydrolysis process. Two mathematical models were validated for both thick and ultrathin electrolytes. The acidification of thick electrolytes was extended some millimeters beyond the aluminum alloy surface, whereas the acidic front was localized next to the metallic joint using ultrathin electrolytes. The combination of both numerical and experimental results allows proving (and explaining why) that the acidification process is more aggressive under dilute than under concentrated electrolytes.  相似文献   
7.
邹燕娣 《中国油脂》2021,46(7):143-147
为了建立一种准确性高、成本低的植物油中苯并(a)芘测定的样品前处理方法,基于GB 5009.7—2016以自制氧化铝柱为固相萃取柱,采用单因素试验对称样量、洗脱剂量、洗脱流速、吸附剂存放时间、吸附剂量这5个影响植物油中苯并(a)芘洗脱的因素进行研究,优化前处理条件,并对测定方法进行考察。结果表明:优化的前处理条件为称样量0.100 0 g、洗脱剂量120 mL、吸附剂(氧化铝)量22 g、洗脱流速1滴/2 s、吸附剂存放时间少于12周;方法检出限为0.2 μg/L,样品加标回收率为94.23%~100.00%,RSD为1.20%~7.36%;同一样品测定结果与SGS测定值接近,相对平均偏差为2.36%~3.50%。说明本试验方法测定结果准确,可应用于油脂企业植物油中痕量苯并(a)芘的测定。  相似文献   
8.
This paper presents a Microsoft Excel tool to calculate liquid-gas mass transfer coefficients in packed towers to support numerical design activities in the courses of Unit Operations for Industrial Process and Sustainable Process Design for the Master’s degree in Chemical Engineering of the University of Naples Federico II (Italy).The Mass Transfer Solver Tool (MT Solver Tool) uses several available models to estimate, separately, the values of liquid and gas mass-transfer coefficients and the wet surface area for 144 random and structured packings of interest for absorption/stripping and distillation processes. In addition, a separate spreadsheet can be used in a user-defined mode, to evaluate the mass transfer coefficients with new packing types or to interpret experimental data when the geometrical and physical characteristics of the packing are known. Eventually, the tool is supplied with a data library, where packing geometry and model fitting parameters can be retrieved.The software is aimed to support students and educators in the Unit Operations for Industrial Process and Sustainable Process Design courses. In particular, this is meant to be an example on how the accuracy of design algorithms adopted in unit operation processes is affected by the use of the underpinning correlations for mass transfer rate or pressure drops. Besides, this is aimed to encourage comparison of different correlations when exact field data are not available. Besides, chemical engineers and researchers interested in packed columns design and modelling data may also benefit from the utilization of the software. The MT Solver Tool was introduced to students in a dedicated tutorial lesson after lecturers on packed column design algorithms for distillation, absorption and stripping. Most of the students of the course participated to a group training aimed to simulate the design of an absorption column supported by the MT Solver Tool providing feedback on its application.After the training, an anonymous survey was proposed to the students to monitor the approval rating of the proposed activity and the use of the MT Solver Tool software to support numerical calculations.  相似文献   
9.
The strengthening method of multi-element M-site solid solution is a common approach to improve mechanical properties of MAX phase ceramic. However, the research on capability of multi-element A-site solid solution to improve mechanical properties has rarely been reported. Thereupon, quasi-high-entropy MAX phase ceramic bulks of Ti2(Al1?xAx)C and Ti3(Al1?xAx)C2 (A = Ga, In, Sn, x = 0.2, 0.3, 0.4) were successfully synthesized by in situ vacuum hot pressing via multi-elements solid solution. The multi-elements solid solution in single-atom thick A layer was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy as well as by energy dispersive X-ray spectroscopy mappings. Effects of doped multi-elements contents on the phase, microstructure, mechanical properties, and high temperature tribological behaviors were studied. Results demonstrated that the Vickers hardness, anisotropic flexural strength, fracture toughness, and tribological properties of Ti–Al–C based MAX ceramics could be remarkably improved by constitution of quasi-high-entropy MAX phase in A layers. Moreover, the strengthening and wear mechanisms were also discussed in detail. This method of multi-element solid solution at A-site provides new way to enhance mechanical properties of other MAX phase ceramics.  相似文献   
10.
Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号