首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90012篇
  免费   8193篇
  国内免费   4831篇
电工技术   3410篇
技术理论   1篇
综合类   7032篇
化学工业   16866篇
金属工艺   8597篇
机械仪表   7605篇
建筑科学   7665篇
矿业工程   3666篇
能源动力   3002篇
轻工业   8485篇
水利工程   2342篇
石油天然气   2668篇
武器工业   1227篇
无线电   6460篇
一般工业技术   13841篇
冶金工业   4443篇
原子能技术   959篇
自动化技术   4767篇
  2024年   206篇
  2023年   1445篇
  2022年   2377篇
  2021年   2983篇
  2020年   3124篇
  2019年   2496篇
  2018年   2380篇
  2017年   3009篇
  2016年   2880篇
  2015年   3041篇
  2014年   4559篇
  2013年   5442篇
  2012年   6265篇
  2011年   6684篇
  2010年   4866篇
  2009年   5146篇
  2008年   4584篇
  2007年   6278篇
  2006年   5669篇
  2005年   4867篇
  2004年   3968篇
  2003年   3546篇
  2002年   3034篇
  2001年   2496篇
  2000年   2172篇
  1999年   1734篇
  1998年   1362篇
  1997年   1188篇
  1996年   1091篇
  1995年   850篇
  1994年   767篇
  1993年   587篇
  1992年   427篇
  1991年   295篇
  1990年   282篇
  1989年   209篇
  1988年   187篇
  1987年   82篇
  1986年   93篇
  1985年   80篇
  1984年   63篇
  1983年   53篇
  1982年   48篇
  1981年   17篇
  1980年   26篇
  1979年   18篇
  1978年   5篇
  1975年   5篇
  1959年   10篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
电子雷管技术提高了爆破器材的本质安全。通过对电子雷管技术发展历程的介绍,对其推广应用的可行性进行了深入分析,论述了电子雷管技术的推广应用对爆破器材安全管理工作的促进作用,并提出了今后推广应用中还需加强的工作。  相似文献   
2.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
3.
PurposeTo determine if there is diurnal variation in gene expression in normal healthy conjunctival cells.MethodsBulbar conjunctival swab samples were collected from four healthy subjects in the morning and evening of the same day. The two swab samples were taken from one eye of each participant, with a minimum of five hours gap between the two samples. RNA was extracted and analysed using RNA sequencing (RNA-Seq).ResultsA total of 121 genes were differentially expressed between the morning and the evening conjunctival samples, of which 94 genes were upregulated in the morning, and 27 genes were upregulated in the evening. Many of the genes that were upregulated in the morning were involved in defence, cell turnover and regulation of gene expression, while the genes upregulated in the evening were involved in signalling and mucin production.ConclusionsThis study has identified several genes whose expression changes over the course of the day. Knowledge of diurnal variations of conjunctival gene expression provides an insight into the regulatory status of the healthy eye and provides a baseline for examining changes during ocular surface disease.  相似文献   
4.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
5.
Food- and waterborne viruses, such as human norovirus, hepatitis A virus, hepatitis E virus, rotaviruses, astroviruses, adenoviruses, and enteroviruses, are major contributors to all foodborne illnesses. Their small size, structure, and ability to clump and attach to inanimate surfaces make viruses challenging to reduce or eliminate, especially in the presence of inorganic or organic soils. Besides traditional wet and dry methods of disinfection using chemicals and heat, emerging physical nonthermal decontamination techniques (irradiation, ultraviolet, pulsed light, high hydrostatic pressure, cold atmospheric plasma, and pulsed electric field), novel virucidal surfaces, and bioactive compounds are examined for their potential to inactivate viruses on the surfaces of foods or food contact surfaces (tools, equipment, hands, etc.). Every disinfection technique is discussed based on its efficiency against viruses, specific advantages and disadvantages, and limitations. Structure, genomic organization, and molecular biology of different virus strains are reviewed, as they are key in determining these techniques effectiveness in controlling all or specific foodborne viruses. Selecting suitable viral decontamination techniques requires that their antiviral mechanism of action and ability to reduce virus infectivity must be taken into consideration. Furthermore, details about critical treatments parameters essential to control foodborne viruses in a food production environment are discussed, as they are also determinative in defining best disinfection and hygiene practices preventing viral infection after consuming a food product.  相似文献   
6.
The carbon vacancy in high-entropy carbides (HECs) has a significant impact on their physical and chemical properties, yet relevant studies have still been relatively few. In this study, we investigate the surface energies of HECs with variable carbon vacancies through first-principles calculations. The results show that the surface energy of the (1 0 0) surface of the stoichiometric HECs is significantly lower than that of (1 1 1) surface. With the decrease in carbon stoichiometry, the surface energies of both (1 0 0) and (1 1 1) surfaces increase gradually, which is mainly due to the weakening of covalent bonding and the decrease of metal Hirshfeld-I (HI) charges. However, the surface energy of (1 0 0) surface increases more quickly than that of (1 1 1) surface and will exceed that of (1 1 1) surface when the carbon stoichiometry decreases to a certain extent, which is primarily attributed to the greater decrease rate of metal HI charges of (1 0 0) surface.  相似文献   
7.
Engineering alloy nanostructures with a combination of highly active noble metals (Pt and Pd) and less electronegative non-noble metal (Ni) is found to be crucial for improving surface reactivity by enriching with active Pt sites. Herein, a multi-skeletal PtPdNi nanodendrites (NDs) was successfully formed by a simple one-pot method with structure directing agent. The modification of Pt electronic structure and their interaction due to compressive strain were explored using benchmark characterization techniques, which showed that the PtPdNi NDs possess Pt-enriched surface, corroborating to more active catalyst sites for oxygen reduction reaction (ORR) in acidic medium. The PtPdNi NDs have a higher electrochemical surface area (63 m2 g?1) and an earlier onset potential (1.01 V) than PtPd NDs, PtNi NDs, and commercial Pt/C catalysts, indicating the outstanding ORR performance. The high mass and specific activities, as well as superior durability after accelerated degradation test (ADT), highlight the remarkable electrocatalytic performance of PtPdNi NDs over others. As a result, enhancing Pt utilization through the formation of PtPdNi NDs could be a reliable strategy to improve ORR electrocatalysis for polymer electrolyte membrane fuel cell (PEMFC) applications.  相似文献   
8.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   
9.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
10.
Developing highly efficient and stable noble metal-free electrocatalysts with excellent catalytic surface for oxygen evolution reactions (OER) is an essential link for stimulating hydrogen generation from water electrolysis. Herein, the scalloped nickel/iron vanadium oxide coated vanadium dioxide (named as VO2@NFVO) has been successfully decorated via a urea-induced chemical etching-reconstruction process in the alkaline solution containing Fe2+ and Ni2+. Corresponding experimental measurements clearly show that favorable chemical etching occurs with the formation of new phases (eg, Ni3V2O8, FeVO4), which make it expose a large number of active sites and regulate the electron density of the active center, thus thereby dramatically enhancing the electrocatalytic performance by promoting electron transfer and optimizing the adsorption energy of reaction intermediates. Under optimized condition, the obtained VO2@NFVO delivers excellent activity merely with smaller overpotential of 290 mV at 10 mA cm?2, outperforming benchmark RuO2 catalyst in an alkaline solution. Moreover, its superior durability is verified by chronoamperometry testing. This simple etching-reconstruction strategy opens a new avenue for the preparation of vanadium-based electrocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号