首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50776篇
  免费   6229篇
  国内免费   3538篇
电工技术   5965篇
技术理论   3篇
综合类   4920篇
化学工业   8795篇
金属工艺   2069篇
机械仪表   3977篇
建筑科学   2618篇
矿业工程   1573篇
能源动力   4961篇
轻工业   1073篇
水利工程   5137篇
石油天然气   3841篇
武器工业   592篇
无线电   1707篇
一般工业技术   4098篇
冶金工业   2718篇
原子能技术   1350篇
自动化技术   5146篇
  2024年   74篇
  2023年   763篇
  2022年   1393篇
  2021年   1671篇
  2020年   1797篇
  2019年   1504篇
  2018年   1346篇
  2017年   1779篇
  2016年   1903篇
  2015年   2015篇
  2014年   2847篇
  2013年   3406篇
  2012年   3476篇
  2011年   4020篇
  2010年   2762篇
  2009年   3054篇
  2008年   2823篇
  2007年   3359篇
  2006年   3156篇
  2005年   2821篇
  2004年   2320篇
  2003年   2078篇
  2002年   1660篇
  2001年   1391篇
  2000年   1177篇
  1999年   959篇
  1998年   803篇
  1997年   672篇
  1996年   642篇
  1995年   608篇
  1994年   507篇
  1993年   390篇
  1992年   325篇
  1991年   206篇
  1990年   210篇
  1989年   161篇
  1988年   112篇
  1987年   85篇
  1986年   57篇
  1985年   28篇
  1984年   43篇
  1983年   33篇
  1982年   19篇
  1981年   8篇
  1980年   7篇
  1979年   15篇
  1978年   4篇
  1977年   4篇
  1959年   21篇
  1951年   22篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
Powder transport systems are ubiquitous in various industries, where they can encounter single powder flow, two-phase flow with solids carried by gas or liquid, and gas–solid–liquid three-phase flow. System geometry, operating conditions, and particle properties have significant impacts on the flow behavior, making it difficult to achieve good transportation of granular materials. Compared to experimental trials and theoretical studies, the numerical approach provides unparalleled advantages over the investigation and prediction of detailed flow behavior, of which the discrete element method (DEM) can precisely capture complex particle-scale information and attract a plethora of research interests. This is the first study to review recent progress in the DEM and coupled DEM with computational fluid dynamics for extensive powder transport systems, including single-particle, gas–solid/solid–liquid, and gas–solid–liquid flows. Some important aspects (i.e., powder electrification during pneumatic conveying, pipe bend erosion, non-spherical particle transport) that have not been well summarized previously are given special attention, as is the application in some new-rising fields (ocean mining, hydraulic fracturing, and gas/oil production). Studies involving important large-scale computation methods, such as the coarse grained DEM, graphical processing unit-based technique, and periodic boundary condition, are also introduced to provide insight for industrial application. This review study conducts a comprehensive survey of the DEM studies in powder transport systems.  相似文献   
2.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
3.
为了减轻因流动加速腐蚀(FAC)引起的锅炉结垢加速、汽水系统管道厚度减小甚至爆裂现象,对超临界机组发生流动加速腐蚀的机理及其主要影响因素进行了研究,并讨论了管壁内表面粗糙度、蒸汽含汽率、pH值、溶氧量对FAC的影响,以及温度与pH值、温度与流速、pH值与溶解氧量、溶解氧量与氢电导率等影响因素之间的相互作用关系,最后结合实际电厂的运行数据验证了分析结果。研究表明:减小工质流速、管壁粗糙度和氢电导率,增大给水的pH值和溶解氧含量可以使FAC的腐蚀速率减小,超临界加氧处理时pH值应在8.9~9.2之间,溶解氧量范围为45~100μg/L,氢电导率的期望值在0.1μS/cm以下。由于各影响因素之间的作用十分复杂,本文只给出了大致范围和趋势,并未给出准确数据。  相似文献   
4.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
5.
Numerical simulations are performed to investigate the real gas effects on shock/expansion fan interaction. Initial perfect gas simulations at low enthalpy capture the flow structures efficiently and outcomes are found to have excellent agreement with the analytical calculations. Furthermore, the simulations with the real gas solver for different enthalpies showed that the variation in enthalpy significantly changes the flow structures. It is observed that an increase in enthalpy leads to a decrease and increase in the postshock and postexpansion fan Mach numbers, respectively. Another important observation is the decrement in the peak pressure ratio with an increment in the enthalpy. These effects are noted to be more pronounced for Mars's environment due to the higher dependency of specific heat on temperature.  相似文献   
6.
The thermodynamics modeling of a Reiner–Philippoff-type fluid is essential because it is a complex fluid with three distinct probable modifications. This fluid model can be modified to describe a shear-thinning, Newtonian, or shear-thickening fluid under varied viscoelastic conditions. This study constructs a mathematical model that describes a boundary layer flow of a Reiner–Philippoff fluid with nonlinear radiative heat flux and temperature- and concentration-induced buoyancy force. The dynamical model follows the usual conservation laws and is reduced through a nonsimilar group of transformations. The resulting equations are solved using a spectral-based local linearization method, and the accuracy of the numerical results is validated through the grid dependence and convergence tests. Detailed analyses of the effects of specific thermophysical parameters are presented through tables and graphs. The study reveals, among other results, that the buoyancy force, solute and thermal expansion coefficients, and thermal radiation increase the overall wall drag, heat, and mass fluxes. Furthermore, the study shows that amplifying the space and temperature-dependent heat source parameters allows fluid particles to lose their cohesive force and, consequently, maximize flow and heat transfer.  相似文献   
7.
The present research work concentrates on viscous dissipation, Dufour, and heat source on an unsteady magnetohydrodynamics natural convective flow of a viscous, incompressible, and electrically conducting fluid past an exponentially accelerated infinite vertical plate in the existence of a strong magnetic field. The presence of the Hall current induces a secondary flow in the problem. The distinguishing features of viscous dissipation and heat flux produced due to gradient of concentration included in the model along with heat source as they are known to arise in thermal-magnetic polymeric processing. The flow equations are discretized implicitly using the finite difference method and solved using MATLAB fsolve routine. Numerical values of the primary and secondary velocities, temperature, concentration, skin friction, Nusselt number, and Sherwood number are illustrated and presented via graphs and tables for various pertinent parametric values. The Dufour effect was observed to strengthen the velocity and temperature profile in the flow domain. In contrast, due to the impact of viscous dissipation, the local Nusselt number reduces. The study also reveals that the inclusion of the chemical reaction term augments the mass transfer rate and diminishes the heat transfer rate at the plate.  相似文献   
8.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
9.
This study aims to investigate the effect of ultrasonic waveforms on the gas–liquid mass transfer process. For a given load power (P), continuous rectangular wave yielded stronger bubble oscillation and higher mass transfer coefficient (kLa) than continuous triangular and sinusoidal wave. For pulsed ultrasound, the kLa decreased monotonically with decreasing duty ratio (D), resulting in weak enhancement at low D (≤33%). For a given average load power (PA), concentrating the P for a shorter period resulted in a higher kLa due to stronger cavitation behavior. For a given PA and D, decreasing the pulse period (T) led to an increase in kLa, which reached a constant high level when the T fell below a critical value. By optimizing the D and T, a kLa equivalent to 92% of that under continuous ultrasound was obtained under pulsed ultrasound at a D of 67%, saving 33% in power consumption.  相似文献   
10.
Lithium iron phosphate battery (LIPB) is the key equipment of battery energy storage system (BESS), which plays a major role in promoting the economic and stable operation of microgrid. Based on the advancement of LIPB technology and efficient consumption of renewable energy, two power supply planning strategies and the china certified emission reduction (CCER) model are proposed respectively. Based on it, the multi-objective planning optimization model with economic benefits, environmental benefits and power supply stability as the objective function is established for the first time, and the Newton Weighted Sum Frisch method (NWSFA) solution model is adopted. In the planning process, rain flow counting method is used to research the life of BESS, which improves the accuracy of energy storage annual cost calculation. A park in northern China is taken as a case study to demonstrate the application of this model. The simulation results show that the annual economic operating cost of BESS is decreased by 18.81%, the energy supply reliability is increased by 0.15%, and the optimal electricity price adjustment ratio of the system is 15%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号