首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3130篇
  免费   143篇
  国内免费   56篇
电工技术   415篇
综合类   110篇
化学工业   707篇
金属工艺   53篇
机械仪表   162篇
建筑科学   174篇
矿业工程   57篇
能源动力   1110篇
轻工业   28篇
水利工程   4篇
石油天然气   61篇
武器工业   12篇
无线电   105篇
一般工业技术   152篇
冶金工业   80篇
原子能技术   43篇
自动化技术   56篇
  2024年   2篇
  2023年   29篇
  2022年   56篇
  2021年   67篇
  2020年   73篇
  2019年   69篇
  2018年   81篇
  2017年   69篇
  2016年   63篇
  2015年   76篇
  2014年   201篇
  2013年   146篇
  2012年   176篇
  2011年   282篇
  2010年   194篇
  2009年   193篇
  2008年   185篇
  2007年   257篇
  2006年   168篇
  2005年   168篇
  2004年   138篇
  2003年   121篇
  2002年   99篇
  2001年   83篇
  2000年   68篇
  1999年   55篇
  1998年   40篇
  1997年   28篇
  1996年   44篇
  1995年   19篇
  1994年   17篇
  1993年   14篇
  1992年   10篇
  1991年   11篇
  1990年   10篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有3329条查询结果,搜索用时 62 毫秒
1.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   
2.
The research of hydrogen fuel internal combustion engine (HICE) had great significance facing the challenges of energy and environmental problems. Based on the detailed hydrogen-air reaction mechanism, the pre-mix model of CHEMKIN-Pro software was selected to simplify the detailed mechanism GRI-3.0. The most important elements and reactions was chose to construct framework mechanism firstly based on the sensitivity coefficient for H2O and NO formation, and additional elements and reactions were added to framework mechanism for complementing the oxidation path of N2 and H2. A simplified mechanism including 24-step elementary reaction was obtained and the laminar burning velocity calculated by this simplified mechanism matches well with the detailed mechanism in a wide range. This simplified mechanism was also applied in a CFD model which predicted the cylinder instantaneous pressure and NOx emission accurately within a large range of fuel air equivalent ratio. Showing that this mechanism has good applicability.  相似文献   
3.
史建波 《中华纸业》2020,(10):33-36
根据两台竹浆碱回收锅炉的实际运行情况,对其结构与运行对污染物排放的影响进行了比较、分析。  相似文献   
4.
《能源学会志》2020,93(4):1624-1633
Depletion of fossil fuels and stringent emission norms focus attention to discover an evitable source of alternative fuel in order to attribute a significant compensation on conventional fuels. Besides, waste management policies encourage the valorization of different wastes for the production of alternative fuels in order to reduce the challenges of waste management. In this context, pyrolysis has become an emerging trend to convert different wastes into alternate fuel and suitable to be used as a substitute fuel for CI engines. The current investigation provides a sustainable and feasible solution for waste plastic management by widening the gap between global plastic production and plastic waste generation. It investigates the performance and emission of a single cylinder DI four stroke diesel engine using waste plastic oil (WPO) derived from pyrolysis of waste plastics using Zeolite-A as catalyst. Engine load tests have been conducted taking waste plastic oil and subsequently a blend of waste plastic oil by 10%, 20%, and 30% in volume proportions with diesel as fuel. The performance of the test engine in terms of brake thermal efficiency is found marginally higher and brake specific fuel consumption comparatively lowest for 20% WPO-diesel blend than pure diesel. The NOx and HC emission is found lower under low load condition and became higher by increasing the load as compared to diesel. Fuel exergy was significantly increasing after blending of WPO with pure diesel, but exergetic efficiency of the blended fuels followed the reverse trend. However, increase in load of the engine improved the exergetic efficiency. The 20% WPO–diesel blended fuel is found suitable to be used as an alternative fuel for diesel engine.  相似文献   
5.
Detailed hydrogen-air chemical reaction mechanisms were coupled with three dimension grids of an experimental hydrogen fueled internal combustion engine (HICE) to establish a combustion model based on CONVERGE software. The influence of excess hydrogen coefficient on the combustion and emission characteristics of HICE under full load was studied based on the CFD model. Simulation results showed that excess hydrogen leaded to higher concentration of OH species in flame front, and quicker hydrogen-oxygen reaction and flame propagation speed, which in turn leaded to higher pressure and temperature in cylinder. The rise of pressure and temperature in turn contributed to the increase of indicate power but un-burned hydrogen leaded to decrease of efficiency. NOx, especially NO emissions decreased significantly with excess hydrogen under full load not only because increased of H concentration, and decreased of O and OH concentration, which leaded to reverse reaction of NO formation through thermal NO routes. Low excess hydrogen coefficient can achieve a good trade-off between power and emissions under full load.  相似文献   
6.
使用夜间灯光数据估算了长三角城市群地区能源消耗量,通过数据包络分析、Tobit模型计算了节能减排效率与影响因素。研究结论表明:我国长三角城市群地区节能效率改进较小而减排效率提升较大,在诸多影响因素中固定资本投资率、产业结构与人口密度对节能减排效率有较大的促进作用;而第二产业集聚度目前影响方向为负,未来对节能减排效率的改进有一定的正向影响。  相似文献   
7.
乙烯裂解炉内复杂物理化学过程耦合模拟与优化能够满足乙烯装置对高效率、低污染和低成本的设计和操作要求,对提高乙烯工业的竞争力具有重要意义。针对简单燃烧机理难以准确预测炉膛燃烧生成NOx浓度分布的弊端,提出了在裂解炉使用更准确的简化GRI-Mesh 3.0机理结合涡耗散概念(EDC)模型的方法,并对Sandia Flame D的燃烧过程进行计算流体力学(CFD)模拟,验证了此耦合模型的可靠性。在已建立的燃烧模型的基础上,研究了助燃空气对降低裂解炉NO排放的影响,结果表明:在满足裂解炉热效率的情况下,空气预热温度为300~600 K、过量空气系数为1.1时降低NO的效果最佳。  相似文献   
8.
《能源学会志》2020,93(3):977-990
Waste tires and cooking oil pose a serious danger to human health and environment. Self-reacting pyrolysis system for waste tires is designed and constructed for converting waste tires into oil that could be used as a sustainable fuel. This study aims to analyze the thermal microstructure of conventional fuels like light diesel oil (LDO) and heavy diesel oil (HDO) as well as blended with waste cooking oil (WCO) and tires pyrolysis oil (TPO) using a co-axial burner via flame spectroscopy analysis. The first Blend 1 (B1) consists of 20% WCO + 80% LDO, the second one (B2) consist of 20% WCO+80%HDO and the last one (B3) was 20%TPO and 80% LDO by mass. This percentage was chosen carefully and according to previous combustion characteristics results. The experimental results showed that B1 will shrink C2 radicals by nearly 61% and 64.5% at Ф = 0.63 and 0.96 respectively. B2 will decrease C2 radicals by nearly 19% and 82% at Ф = 0.63 and 0.96 respectively. Finally, B3 will reduce C2 radical's intensity by nearly 39% and 58% at Ф = 0.63 and 0.96 respectively. TPO produced CH emission radicals lower than that of LDO by nearly 5.9%. LDO droplets absorbed more radiation energy needed for excitation than that of WCO due to droplet size and fuel physic-chemical properties. B2 fuel is recommended to replace LDO at Ф = 0.63 and 0.96.  相似文献   
9.
The promising opportunity to reach intercontinental long distances in a few hours is a remarkable issue for both private companies and public organizations: teams of scientists, technicians and researchers in Europe, USA, China, Russia and India are working at national and international programs on long range high speed civil transport. The Space X's CEO also announced, at the IAC 2017 conference, the growing interest in developing a 30-min transatlantic passenger flight by means of a 2-stage rocket-based vehicle. Meeting the dwell requirement of antipodal ranges and high speeds is realistic through a new era of hydrogen-fuelled hypersonic airbreathing vehicles. The interest in hydrogen as aviation fuel has recently increased not only due to the growth of worldwide air travel and time reduction requirements, also for the dramatic rise of common aviation fuel prices, and the continuously increasing restrictive environmental issues.In the light of these changes that have occurred in fuel prices, emissions reduction imperatives and the currently higher demand for supersonic airline travels, hydrogen-fuelled hypersonic airbreathing airliners are a valuable chance with respect to other means of transport (i.e., a rocked based passenger transport). In fact, hydrogen is one of the most environmental friendly fuels, since no particulate and carbon oxide emissions are produced. Past objections on hydrogen as fuel for civil transport, such as safety, liquefying and storing hydrogen are now overcame and its technological maturity opens a large worldwide market for hydrogen as “green” fuel. However, since the opportunity for hydrogen as fuel for future fleets of airline transport resides in its “green” peculiarity, the investigation of the impact of the H2/air hot exhausts on the ozone layer depletion is mandatory. In fact, a lot of hypersonic cruise vehicles fly at an altitude of 25000–30000 m that corresponds to the ozonosphere. In this region, the concentration of ozone is maximum and NOx emissions may catalyse the ozone destruction.In this context, the goal of this paper is to estimate the effect of the H2/air emissions (i.e., nitrogen oxides, hydroxide and water vapor) of a fleet of 200 hydrogen fuelled hypersonic airliners flying once a day for 360 days from Brussels to Sydney, on the ozone layer and on the global temperature increase.  相似文献   
10.
针对浮法玻璃熔窑火焰空间建立模型并进行了数值模拟,在保证热值相同的前提下,对比研究了重油燃烧及将石油焦部分替代重油燃烧时的流场分布特征。结果表明,石油焦部分代替重油燃烧后,两种燃料可很好地混合燃烧,窑炉内温度制度基本不受影响;石油焦着火时间比重油长,两种燃料混合燃烧时平均着火点滞后于仅使用重油时,且燃烧路径更长,燃烧时产生了大量CO,整个火焰空间及烟气出口处NOx的平均排放量与仅使用重油相比降低了30.02%,NOx减排效果明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号